Skip to main content

Detection and Analysis of Wolbachia in Plant-Parasitic Nematodes and Insights into Wolbachia Evolution

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

Since the discovery of Wolbachia in plant-parasitic nematodes (PPNs), there has been increased interest in this earliest branching clade that may hold important clues to early transitions in Wolbachia function in the Ecdysozoa. However, due to the specialized skills and equipment of nematology and the difficulty in culturing most PPNs, these PPN-type Wolbachia remain undersampled and poorly understood. To date, there are few established laboratory methods for working with PPN-type Wolbachia strains, and most research has relied on chance discovery and comparative genomics. Here, we address this challenge by providing detailed methods to assist researchers with more efficiently collecting PPNs and screen these communities, populations, or single nematodes with a newly developed PPN-type Wolbachia-specific PCR assay. We provide an overview of the typical yields and outcomes of these methods, to facilitate further targeted cultivation or experimental methods, and finally we provide a short introduction to some of the specific challenges and solutions in following through with comparative or population genomics on PPN-type Wolbachia strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on earth. Proc Natl Acad Sci U S A 115:6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferris H, Griffiths BS, Porazinska DL et al (2012) Reflections on plant and soil nematode ecology: past, present and future. J Nematol 44:115–126

    PubMed  PubMed Central  Google Scholar 

  3. Ferris H, Tuomisto H (2015) Unearthing the role of biological diversity in soil health. Soil Biol Biochem 85:101–109. https://doi.org/10.1016/j.soilbio.2015.02.037

    Article  CAS  Google Scholar 

  4. Nicol JM, Turner SJ, Coyne DL et al (2011) Current nematode threats to world agriculture. In: Jones JT, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 21–44

    Chapter  Google Scholar 

  5. Haegeman A, Vanholme B, Jacob J et al (2009) An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup. Int J Parasitol 39:1045–1054. https://doi.org/10.1016/j.ijpara.2009.01.006

    Article  PubMed  Google Scholar 

  6. Wasala SK, Brown AMV, Kang J et al (2019) Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.00964

  7. Denver DR, Brown AMV, Howe DK et al (2016) Genome skimming: a rapid approach to gaining diverse biological insights into multicellular pathogens. PLoS Pathog 12:e1005713. https://doi.org/10.1371/journal.ppat.1005713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown AMV, Wasala SK, Howe DK et al (2016) Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Sci Rep 6:34955. https://doi.org/10.1038/srep34955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weyandt N, Aghdam SA, Brown AMV (2022) Discovery of early-branching Wolbachia reveals functional enrichment on horizontally transferred genes. Front Microbiol 13:1–22. https://doi.org/10.3389/fmicb.2022.867392

  10. Brown AMV (2018) Endosymbionts of plant-parasitic nematodes. Annu Rev Phytopathol 56:11.1–11.18

    Article  Google Scholar 

  11. Gerth M, Bleidorn C (2016) Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol 2:16241. https://doi.org/10.1038/nmicrobiol.2016.241

    Article  CAS  PubMed  Google Scholar 

  12. Driscoll TP, Verhoeve VI, Brockway C et al (2020) Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 8:1–39. https://doi.org/10.7717/peerj.10646

  13. Martinez J, Klasson L, Welch JJ, Jiggins FM (2021) Life and death of selfish genes: comparative genomics reveals the dynamic evolution of cytoplasmic incompatibility. Mol Biol Evol 38:2–15. https://doi.org/10.1093/molbev/msaa209

    Article  CAS  PubMed  Google Scholar 

  14. Vancaester E, Blaxter M (2023) Phylogenomic analysis of Wolbachia genomes from the Darwin tree of life biodiversity genomics project. PLoS Biol 21:1–23. https://doi.org/10.1371/journal.pbio.3001972

    Article  CAS  Google Scholar 

  15. Nikoh N, Hosokawa T, Moriyama M et al (2014) Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci 111:10257–10262. https://doi.org/10.1073/pnas.1409284111

  16. Gillespie JJ, Joardar V, Williams KP et al (2012) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 194:376–394. https://doi.org/10.1128/JB.06244-11

  17. Lefoulon E, Clark T, Guerrero R et al (2020) Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genomics 6:1–21. https://doi.org/10.1099/mgen.0.000487

  18. Scholz M, Albanese D, Tuohy K et al (2020) Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun 11. https://doi.org/10.1038/s41467-020-19016-0

  19. Brown AMV, Wasala SK, Howe DK et al (2018) Comparative genomics of Wolbachia–Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol 9:1–21. https://doi.org/10.3389/fmicb.2018.02482

    Article  Google Scholar 

  20. Dudzic JP, Curtis CI, Gowen BE, Perlman SJ (2022) A highly divergent Wolbachia with a tiny genome in an insect-parasitic tylenchid nematode. Proc R Soc B Biol Sci 289. https://doi.org/10.1098/rspb.2022.1518

  21. Dunning Hotopp JC (2011) Horizontal gene transfer between bacteria and animals. Trends Genet 27:157–163. https://doi.org/10.1016/j.tig.2011.01.005.Horizontal

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koutsovoulos G, Makepeace B, Tanya VN, Blaxter MM (2014) Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode. PLoS Genet 10:e1004397. https://doi.org/10.1371/journal.pgen.1004397

  23. Bordenstein SR, Fitch DHA, Werren JH (2003) Absence of Wolbachia in nonfilariid nematodes. J Nematol 35:266–270

    Google Scholar 

  24. Augustinos AA, Santos-Garcia D, Dionyssopoulou E et al (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One 6:e28695. https://doi.org/10.1371/journal.pone.0028695

  25. Treonis AM, Unangst SK, Kepler RM et al (2018) Characterization of soil nematode communities in three cropping systems through morphological and DNA metabarcoding approaches. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-20366-5

    Article  CAS  Google Scholar 

  26. White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity (Edinb) 102:483–489. https://doi.org/10.1038/hdy.2009.5

  27. Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M (2017) Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution (N Y) 71:995–1008. https://doi.org/10.1111/evo.13197

  28. Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev Camb Philos Soc 90:89–111

    Google Scholar 

  29. Barker KR (1985) Nematode extraction and bioassays. An Adv treatise Meloidogyne 2:19–35

    Google Scholar 

  30. Van Bezooijen J (2006) Methods and techniques for nematology. Wageningen University Wageningen

    Google Scholar 

  31. Coyne DL (2007) Practical plant nematology: a field and laboratory guide. IITA

    Google Scholar 

  32. Hallmann J, Viaene N (2013) Nematode extraction: PM 7/119 (1). EPPO Bull 43:471–495

    Article  Google Scholar 

  33. Edwards U, Rogall T, Blöcker H et al (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frank JA, Reich CI, Sharma S et al (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470. https://doi.org/10.1128/AEM.02272-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jenkins WR (1964) A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Report 48:692

    Google Scholar 

  36. Mai WF, Lyon HH (1975) Pictorial key to genera of plant-parasitic nematodes. Cornell University Press

    Google Scholar 

  37. Rao RU, Huang Y, Fischer K et al (2009) Brugia malayi: effects of nitazoxanide and tizoxanide on adult worms and microfilariae of filarial nematodes. Exp Parasitol 121:38–45

    Article  CAS  PubMed  Google Scholar 

  38. Fischer K, Beatty WL, Jiang D et al (2011) Tissue and stage-specific distribution of Wolbachia in Brugia malayi. PLoS Negl Trop Dis 5:e1174

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brown AMV, Wasala SK, Howe DK et al (2018) Comparative genomics of Wolbachia-Cardinium dual endosymbiosis in a plant-parasitic nematode. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02482

  40. Williams BD, Schrank B, Huynh C et al (1992) A genetic mapping system in Caenorhabditis elegans based on polymorphic sequene-tagged sites. Genetics 131:609–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity (Edinb) 98:13–20. https://doi.org/10.1038/sj.hdy.6800881

    Article  CAS  PubMed  Google Scholar 

  42. Zélé F, Santos I, Olivieri I et al (2018) Endosymbiont diversity and prevalence in herbivorous spider mite populations in South-Western Europe. FEMS Microbiol Ecol 94:1–11. https://doi.org/10.1093/femsec/fiy015

    Article  CAS  Google Scholar 

  43. Zhao D-X, Zhang X-F, Hong X-Y (2013) Host-symbiont interactions in spider mite Tetranychus truncates doubly infected with Wolbachia and Cardinium. Environ Entomol 42:445–452. https://doi.org/10.1603/EN12354

    Article  PubMed  Google Scholar 

  44. Zhu YX, Song YL, Zhang YK et al (2018) Incidence of facultative bacterial endosymbionts in spider mites associated with local environments and host plants. Appl Environ Microbiol 84:AEM.02546-17. https://doi.org/10.1128/AEM.02546-17

    Article  Google Scholar 

  45. Nakamura Y, Yukuhiro F, Matsumura M, Noda H (2012) Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47:273–283. https://doi.org/10.1007/s13355-012-0120-z

    Article  Google Scholar 

  46. White JA, Kelly SE, Cockburn SN et al (2011) Endosymbiont costs and benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity (Edinb) 106:585–591. https://doi.org/10.1038/hdy.2010.89

    Article  CAS  PubMed  Google Scholar 

  47. Mee PT, Weeks AR, Walker PJ et al (2015) Detection of low-level Cardinium and Wolbachia infections in Culicoides. Appl Environ Microbiol 81:6177–6188. https://doi.org/10.1128/AEM.01239-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abad P, Gouzy J, Aury J-MM et al (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915. https://doi.org/10.1038/nbt.1482

    Article  CAS  PubMed  Google Scholar 

  49. Youssef RM, Kim K-H, Haroon SA, Matthews BF (2013) Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots. Exp Parasitol 134:266–274

    Article  CAS  PubMed  Google Scholar 

  50. Mitiku M (2018) Plant-parasitic nematodes and their management: a review. Agric Res Technol 8:30–38

    Google Scholar 

  51. Wang S, Gergerich RC, Wickizer SL, Kim KS (2002) Localization of transmissible and nontransmissible viruses in the vector nematode Xiphinema americanum. Phytopathology 92:646–653

    Article  PubMed  Google Scholar 

  52. Lambert K, Bekal S (2002) Introduction to plant-parasitic nematodes. Plant Heal Instr 10:1094–1218

    Google Scholar 

  53. Davis EL, Hussey RS, Baum TJ et al (2000) Nematode parasitism genes. Annu Rev Phytopathol 38:365–396

    Article  CAS  PubMed  Google Scholar 

  54. de Oliveira CMG, Monteiro AR, Blok VC (2011) Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Trop Plant Pathol 36:65–73

    Google Scholar 

  55. Bogale M, Baniya A, DiGennaro P (2020) Nematode identification techniques and recent advances. Plan Theory 9:1260

    CAS  Google Scholar 

  56. Jones JT, Haegeman A, Danchin EGJ et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  PubMed  PubMed Central  Google Scholar 

  57. Castillo P, Vovlas N (2007) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management. Brill

    Book  Google Scholar 

  58. Holterman M, van der Wurff A, van den Elsen S et al (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800

    Article  CAS  PubMed  Google Scholar 

  59. van Megen H, van den Elsen S, Holterman M et al (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950

    Article  Google Scholar 

  60. Siddiqi MR (1980) The origin and phylogeny of the nematode orders Tylenchida Thorne, 1949 and Aphelenchida n. ord. In: Helminthological abstracts. Series B. Plant Nematology, pp 143–170

    Google Scholar 

  61. Sultana T, Kim J, Lee S-H et al (2013) Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes. BMC Evol Biol 13:1–17

    Article  Google Scholar 

  62. Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593

    Article  CAS  PubMed  Google Scholar 

  63. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA (2017) MetaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. https://doi.org/10.1101/gr.213959.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  66. Walker BJ, Abeel T, Shea T et al (2014) Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One:9. https://doi.org/10.1371/journal.pone.0112963

  67. Parks DH, Imelfort M, Skennerton CT et al (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  70. Page AJ, Cummins CA, Hunt M et al (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://doi.org/10.1093/bioinformatics/btv421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and high-performance computing Europe PMC funders group. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109.jModelTest

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ronquist F, Teslenko M, Van Der Mark P et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gao F, Chen C, Arab DA et al (2019) EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol 9:3891–3898. https://doi.org/10.1002/ece3.5015

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhang Z, Li J, Zhao XQ et al (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics, Proteomics Bioinforma 4:259–263. https://doi.org/10.1016/S1672-0229(07)60007-2

    Article  CAS  Google Scholar 

  76. Alexa A, Rahnenfuhrer J (2020) topGO: enrichment analysis for gene ontology. R Package Version 2.40.0

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation (Award 2047684) and United Stated Dept of Agriculture NIFA (Award 20216701335757) to A.M.V.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda M. V. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaur, A., Brown, A.M.V. (2024). Detection and Analysis of Wolbachia in Plant-Parasitic Nematodes and Insights into Wolbachia Evolution. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics