Skip to main content

Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

  • 434 Accesses

Abstract

Maternally inherited symbiotic bacteria that interfere with the reproduction of their hosts can contribute to selective sweeps of mitochondrial haplotypes through hitch-hiking or coordinate inheritance of cytoplasmic bacteria and host mitochondria. The sweep will be manifested by genetic variations of mitochondrial genomic DNA of symbiont-infected hosts relative to their uninfected counterparts. In particular, at the population level, infected specimens will show a reduced mitochondrial DNA polymorphism compared to that in the nuclear DNA. This may challenge the use of mitochondrial DNA sequences as neutral genetic markers, as the mitochondrial patterns will reflect the evolutionary history of parasitism, rather than the sole evolutionary history of the host. Here, I describe a detailed step-by-step procedure to infer the occurrence and timing of symbiont-induced mitochondrial sweeps in host species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hurst GD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts. Proc Biol Sci 272:1525–1534

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiggins FM, Hurst GD (2011) Microbiology. Rapid insect evolution by symbiont transfer. Science 332:185–186

    Article  CAS  PubMed  Google Scholar 

  3. Duplouy A, Hurst GD, O’Neill SL, Charlat S (2010) Rapid spread of male-killing Wolbachia in the butterfly Hypolimnas bolina. J Evol Biol 23:231–235

    Article  CAS  PubMed  Google Scholar 

  4. Engelstädter J, Hurst GD (2007) The impact of male-killing bacteria on host evolutionary processes. Genetics 175:245–254

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hurst GD, Jiggins FM, Pomiankowski A (2002) Which way to manipulate host reproduction? Wolbachia that cause cytoplasmic incompatibility are easily invaded by sex ratio-distorting mutants. Am Nat 160:360–373

    Article  PubMed  Google Scholar 

  6. Koehncke A, Telschow A, Werren JH, Hammerstein P (2009) Life and death of an influential passenger: Wolbachia and the evolution of CI-modifiers by their hosts. PLoS One 4:e4425

    Article  PubMed  PubMed Central  Google Scholar 

  7. Correa CC, Ballard JWO (2016) Wolbachia associations with insects: winning or losing against a master manipulator. Front Ecol Evol 3:153

    Article  Google Scholar 

  8. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702–702

    Article  CAS  PubMed  Google Scholar 

  9. Taylor MJ, Bordenstein SR, Slatko B (2018) Microbe profile: Wolbachia: a sex selector, a viral protector and a target to treat filarial nematodes. Microbiology (Reading) 164:1345–1347

    Article  CAS  PubMed  Google Scholar 

  10. Zug R, Hammerstein P (2018) Evolution of reproductive parasites with direct fitness benefits. Heredity 120:266–281

    Article  PubMed  Google Scholar 

  11. Charlat S, Duplouy A, Hornett EA, Dyson EA, Davies N, Roderick GK, Wedell N, Hurst GD (2009) The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina. BMC Evol Biol 9:64

    Article  PubMed  PubMed Central  Google Scholar 

  12. Graham RI, Wilson K (2012) Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol Biol 12:204

    Google Scholar 

  13. Narita S, Nomura M, Kato Y, Fukatsu T (2006) Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol Ecol 15:1095–1108

    Article  CAS  PubMed  Google Scholar 

  14. Jiggins FM (2003) Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164:5–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodriguero MS, Lanteri AA, Confalonieri VA (2010) Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights on reproductive mode, infection age and evolutionary forces shaping genetic variation. BMC Evol Biol 10:340

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jäckel R, Mora D, Dobler S (2013) Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol Ecol 22:4241–4255

    Google Scholar 

  17. Deng J, Assandri G, Chauchan P, Futahashi R, Galimberti A, Hansson B, Lancaster LT, Takahashi Y, Svensson EI, Duplouy A (2021) Wolbachia-driven selective sweep in a range expanding insect species. BMC Ecology and Evolution 21:181

    Google Scholar 

  18. Jiggins FM (2017) The spread of Wolbachia through mosquito populations. PLoS Biol 15:e2002780

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rokas A, Atkinson RJ, Brown GS, West SA, Stone GN (2001) Understanding patterns of genetic diversity in the oak gallwasp Biorhiza pallida: demographic history or a Wolbachia selective sweep? Heredity 87:294–304

    Article  CAS  PubMed  Google Scholar 

  20. Baldo L, Hotopp JC, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MC, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098–7110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proceedings of the Royal Society of London. Series B: Biological Sciences 265:509–515

    CAS  Google Scholar 

  22. O’Neill SL, Giordano R, Colbert AM, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89:2699–2702

    Article  PubMed  PubMed Central  Google Scholar 

  23. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  24. Pietri JE, DeBruhl H, Sullivan W (2016) The rich somatic life of Wolbachia. Microbiology 5:923–936

    Article  Google Scholar 

  25. Frost CL, Pollock SW, Smith JE, Hughes WO (2014) Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PLoS One 9:e95122

    Article  PubMed  PubMed Central  Google Scholar 

  26. Barton NH (1998) The effect of hitch-hiking on neutral genealogies. Genet Res 72:123–133

    Article  CAS  Google Scholar 

  27. Durrett R, Schweinsberg J (2004) Approximating selective sweeps. Theor Popul Biol 66:129–138

    Article  PubMed  Google Scholar 

  28. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rich SM, Licht MC, Hudson RR, Ayala FJ (1998) Malaria’s eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proc Natl Acad Sci U S A 95:4425–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ghanavi HR, Twort VG, Duplouy A (2021) Exploring bycatch diversity of organisms in whole genome sequencing of Erebidae moths (Lepidoptera). Sci Rep 11:24499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Twort VG, Minet J, Wheat CW, Wahlberg N (2021) Museomics of a rare taxon: placing Whalleyanidae in the Lepidoptera tree of life. Syst Entomol 46:926–937

    Article  Google Scholar 

  33. Baldo L, Werren JH (2007) Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with MLST. Curr Microbiol 55:81–87

    Article  CAS  PubMed  Google Scholar 

  34. Bleidorn C, Gerth M (2018) A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia. FEMS Microbiol Ecol 94(1)

    Google Scholar 

  35. Booker TR, Jackson BC, Keightley PD (2017) Detecting positive selection in the genome. BMC Biol 15:98

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tuda M, Iwase SI, Kébé K, Haran J, Skuhrovec J, Sanaei E, Tsuji N, Podlussány A, Merkl O, El-Heneidy AH, Morimoto K (2021) Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia. Sci Rep 11:9664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shoemaker DD, Dyer KA, Ahrens M, McAbee K, Jaenike J (2004) Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168:2049–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyata MN, Nomura M, Kageyama D (2020) Wolbachia have made it twice: hybrid introgression between two sister species of Eurema butterflies. Ecol Evol 10(15):323-8330

    Google Scholar 

  39. Keller GP, Windsor DM, Saucedo JM, Werren JH (2004) Reproductive effects and geographical distributions of two Wolbachia strains infecting the Neotropical beetle, Chelymorpha alternans Boh. (Chrysomelidae, Cassidinae). Mol Ecol 13:2405–2420

    Google Scholar 

  40. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

AD is funded by the Academy of Finland (grant #321543) and a HiLIFE fellowship. Thanks to the editor Prof. A. Fallon, as well as to Dr. P. Seppä, Dr. F. Valerio and Dr. V. Twort for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Duplouy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Duplouy, A. (2024). Validating a Mitochondrial Sweep Accompanying the Rapid Spread of a Maternally Inherited Symbiont. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics