Skip to main content

Procedures for the Detection of Wolbachia-Conferred Antiviral Protection in Drosophila melanogaster

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

Spread of Wolbachia infections in host populations may be enhanced by Wolbachia-conferred protection from viral pathogens. Wolbachia-infected Drosophila melanogaster survive the pathogenic effects of positive-sense single-stranded RNA virus infections at a higher rate than the flies without Wolbachia. The protection can occur with or without detectable reduction in virus titer. For the comparisons to be meaningful, Wolbachia-harboring and Wolbachia-free insects need to be genetically matched, and original populations of gut microbiota need to be restored after the removal of Wolbachia using antibiotics. Here, I describe the procedures needed to detect Wolbachia-conferred antiviral protection against Drosophila C virus measured as the difference in survival and viral titer between flies with and without Wolbachia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e1000002

    Google Scholar 

  2. Hedges LM, Brownlie JC, O’Neill SL et al (2008) Wolbachia and virus protection in insects. Science 322:702

    Google Scholar 

  3. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139:1268–1278

    Google Scholar 

  4. Utarini A, Indriani C, Ahmad RA et al (2021) Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384:2177–2186

    Google Scholar 

  5. Anders KL, Indriani C, Ahmad RA et al (2018) The AWED trial (applying Wolbachia to eliminate dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomized controlled trial. Trials 19:302

    Google Scholar 

  6. Nazni WA, Hoffmann AA, NoorAfizah A et al (2019) Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol 29:4241–4248.e5

    Google Scholar 

  7. Rancès E, Ye YH, Woolfit M et al (2012) The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog 8:e1002548

    Google Scholar 

  8. Bourtzis K, Pettigrew MM, O’Neill SL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Mol Biol 9:635–639

    Google Scholar 

  9. Chrostek E, Marialva MSP, Yamada R et al (2014) High anti-viral protection without immune upregulation after interspecies Wolbachia transfer. PLoS One 9:e99025

    Google Scholar 

  10. Ant TH, Herd CS, Geoghegan V et al (2018) The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 14:e1006815

    Google Scholar 

  11. Beckmann J, Ronau J, Hochstrasser M (2017) A Wolbachia deubiquitylating enzyme induces cytoplasmic incompatibility. Nat Microbiol 2:1–7

    Google Scholar 

  12. LePage DP, Metcalf JA, Bordenstein SR et al (2017) Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543:243–247

    Google Scholar 

  13. Adams KL, Abernathy DG, Willett BC et al (2021) Wolbachia cifB induces cytoplasmic incompatibility in the malaria mosquito vector. Nat Microbiol 6:1575–1582

    Google Scholar 

  14. Cogni R, Ding SD, Pimentel AC et al (2021) Wolbachia reduces virus infection in a natural population of Drosophila. Commun Biol 4:1327

    Google Scholar 

  15. Chrostek E, Marialva MSP, Esteves SS et al (2013) Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9:e1003896

    Google Scholar 

  16. Pais IS, Valente RS, Sporniak M et al (2018) Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol 16:e2005710

    Google Scholar 

  17. Johnson KN, Christian PD (1999) Molecular characterization of Drosophila C virus isolates. J Invertebr Pathol 73:248–254

    Google Scholar 

  18. Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  19. Chrostek E, Martins N, Marialva MS et al (2021) Wolbachia-conferred antiviral protection is determined by developmental temperature. MBio 12

    Google Scholar 

  20. Ferreira ÁG, Naylor H, Esteves SS et al (2014) The toll-dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10:e1004507

    Google Scholar 

  21. Chrostek E, Teixeira L (2015) Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol 13:e1002065

    Google Scholar 

  22. Zhou W, Rousset F, O’Neill S (1998) Phylogeny and PCR–based classification of Wolbachia strains using wsp gene sequences. Proc R Soc B Biol Sci 265:509–515

    Google Scholar 

  23. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    Google Scholar 

  24. Deddouche S, Matt N, Budd A et al (2008) The DExD/H-box helicase Dicer-2 mediates the induction of antiviral activity in Drosophila. Nat Immunol 9:1425–1432

    Google Scholar 

  25. Brun G and Plus N (1978) The viruses of Drosophila, In: Ashburner M, Wright, TRF, The genetics and biology of Drosophila, pp. 625–702 Academic Press, New York

    Google Scholar 

  26. Layton EM, On J, Perlmutter JI et al (2019) Paternal grandmother age affects the strength of Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. MBio 10

    Google Scholar 

  27. Merkling SH and Rij RP van (2015) Analysis of resistance and tolerance to virus infection in Drosophila. Nat Protoc 10:1084–1097

    Google Scholar 

  28. Bio-Rad Laboratories I Real-Time PCR Applications Guide. https://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_5279.pdf

  29. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ridley EV, Wong ACN, Douglas AE (2013) Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster. Appl Environ Microbiol 79:3209–3214

    Google Scholar 

  31. Ballard JWO, Melvin RG (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. Insect Mol Biol 16:799–802

    Google Scholar 

  32. Webster CL, Waldron FM, Robertson S et al (2015) The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol 13:e1002210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Chrostek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chrostek, E. (2024). Procedures for the Detection of Wolbachia-Conferred Antiviral Protection in Drosophila melanogaster. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics