Skip to main content

Measuring Host Fitness Effects and Transmission of Wolbachia Strains in Aedes aegypti Mosquitoes

  • Protocol
  • First Online:
Wolbachia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2739))

Abstract

Lines of Aedes aegypti mosquitoes infected with heritable Wolbachia bacteria are being developed and released for arbovirus control. Coordinated releases of lab-reared Wolbachia mosquitoes have reduced local disease incidence by spreading virus-blocking Wolbachia strains and by crashing mosquito populations through incompatible male releases. The phenotypic effects of Wolbachia are diverse and depend on both genetics and the environment. Accurate assessments of Wolbachia effects in mosquitoes are essential, as such effects can make the difference between success and failure of a Wolbachia release program. This chapter provides guidelines for testing key Wolbachia host effects and transmission in Aedes aegypti: the most important arbovirus vector and the most common target of Wolbachia release programs. The protocols should be useful for evaluating mosquito strains prior to field release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ritchie SA, Johnson BJ (2017) Advances in vector control science: rear-and-release strategies show promise... But don’t forget the basics. J Infect Dis 215(suppl_2):S103-S8

    Google Scholar 

  2. Caragata EP, Dutra HLC, Sucupira PHF et al (2021) Wolbachia as translational science: controlling mosquito-borne pathogens. Trends Parasitol 37(12):1050–1067

    Article  PubMed  Google Scholar 

  3. Shropshire JD, Leigh B, Bordenstein SR (2020) Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? elife 9:e61989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng X, Zhang D, Li Y et al (2019) Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572:56–61

    Article  CAS  PubMed  Google Scholar 

  5. Beebe NW, Pagendam D, Trewin BJ et al (2021) Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia. Proc Natl Acad Sci U S A 118(41)

    Google Scholar 

  6. Schmidt TL, Barton NH, Rasic G et al (2017) Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol 15(5):e2001894

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ant TH, Mancini MV, McNamara CJ et al (2022) Wolbachia-virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health:1–14

    Google Scholar 

  8. Nazni WA, Hoffmann AA, NoorAfizah A et al (2019) Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol 29(24):4241–8 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Utarini A, Indriani C, Ahmad RA et al (2021) Efficacy of Wolbachia-infected mosquito deployments for the control of dengue. N Engl J Med 384(23):2177–2186

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hoffmann AA, Turelli MJ (1997). Cytoplasmic incompatibility in insects. Influential passengers: inherited microorganisms and arthropod reproduction. pp 42–80

    Google Scholar 

  11. Zeng Q, She L, Yuan H, Luo Y et al (2022) A standalone incompatible insect technique enables mosquito suppression in the urban subtropics. Commun Biol 5(1):1–13

    Article  Google Scholar 

  12. Nguyen TH, Nguyen HL, Nguyen TY et al (2015) Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasit Vectors 8:563

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yeap HL, Mee P, Walker T et al (2011) Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187(2):583–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McMeniman CJ, Lane RV, Cass BN et al (2009) Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323(5910):141–144

    Article  CAS  PubMed  Google Scholar 

  15. Garcia GA, Sylvestre G, Aguiar R et al (2019) Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Negl Trop Dis 13(1):e0007023

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ross PA, Turelli M, Hoffmann AA (2019) Evolutionary ecology of Wolbachia releases for disease control. Annu Rev Genet 53(1):93–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffmann AA, Ross PA, Rašić G (2015) Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8(8):751–768

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc B Biol Sci 265(1395):509–515

    Article  CAS  Google Scholar 

  19. Lee SF, White VL, Weeks AR et al (2012) High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78(13):4740–4743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goncalves DDS, Hooker DJ, Dong Y et al (2019) Detecting wMel Wolbachia in field-collected Aedes aegypti mosquitoes using loop-mediated isothermal amplification (LAMP). Parasit Vectors 12(1):404

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anderson LE (1954) Hoyer’s solution as a rapid permanent mounting medium for bryophytes. Bryologist 7(3):242–244

    Article  Google Scholar 

  22. Lau M-J, Ross PA, Hoffmann AA (2021) Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Negl Trop Dis 15(2):e0009179

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nevalainen LB, Newton IL (2023) Detection and assessment of Wolbachia pipientis infection. Drosophila Oogenesis: Methods and Protocols: Springer, pp 291–307

    Google Scholar 

  24. Costa-da-Silva AL (2022) Artificial membrane feeding mosquitoes in the laboratory with glytube. Cold Spring Harbor Protocols

    Google Scholar 

  25. Faber PA, Dorai AJ, Chown SL (2022) A standardised low-cost membrane blood-feeder for Aedes aegypti made using common laboratory materials. PeerJ 10:e14247

    Article  PubMed  PubMed Central  Google Scholar 

  26. Walker T, Johnson PH, Moreira LA et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476(7361):450–453

    Google Scholar 

  27. Xi Z, Khoo CC, Dobson SL (2005) Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310(5746):326–328

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmann AA, Montgomery BL, Popovici J et al (2011) Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476(7361):454–457

    Article  CAS  PubMed  Google Scholar 

  29. Dobson SL, Rattanadechakul W (2001) A novel technique for removing Wolbachia infections from Aedes albopictus (Diptera: Culicidae). J Med Ent 38(6):844–849

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perran A. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ross, P.A. (2024). Measuring Host Fitness Effects and Transmission of Wolbachia Strains in Aedes aegypti Mosquitoes. In: Fallon, A.M. (eds) Wolbachia. Methods in Molecular Biology, vol 2739. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3553-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3553-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3552-0

  • Online ISBN: 978-1-0716-3553-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics