Skip to main content

Classification and Identification of Non-canonical Base Pairs and Structural Motifs

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2726))

  • 181 Accesses

Abstract

The 3D structures of many ribonucleic acid (RNA) loops are characterized by highly organized networks of non-canonical interactions. Multiple computational methods have been developed to annotate structures with those interactions or automatically identify recurrent interaction networks. By contrast, the reverse problem that aims to retrieve the geometry of a look from its sequence or ensemble of interactions remains much less explored. In this chapter, we will describe how to retrieve and build families of conserved structural motifs using their underlying network of non-canonical interactions. Then, we will show how to assign sequence alignments to those families and use the software BayesPairing to build statistical models of structural motifs with their associated sequence alignments. From this model, we will apply BayesPairing to identify in new sequences regions where those loop geometries can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://rna.bgsu.edu/rna3dhub/pdb

  2. 2.

    http://ndbserver.rutgers.edu

  3. 3.

    https://www.bgsu.edu/research/rna/help/rna-3d-hub-help/annotating-pdb-files-with-fr3d.html

  4. 4.

    http://rna.bgsu.edu/rna3dhub/pdb

  5. 5.

    https://rna3dmotif.lri.fr/

  6. 6.

    http://bayespairing.cs.mcgill.ca/resources

  7. 7.

    http://carnaval.lri.fr/

  8. 8.

    https://rfam.xfam.org/

  9. 9.

    http://www.clustal.org/omega/

  10. 10.

    https://www.ebi.ac.uk/Tools/msa/clustalo/

  11. 11.

    https://www.tbi.univie.ac.at/RNA/

  12. 12.

    http://bayespairing.cs.mcgill.ca/

  13. 13.

    http://rna.bgsu.edu/rna3dhub/pdb

  14. 14.

    https://www.bgsu.edu/research/rna/help/rna-3d-hub-help/unit-ids.html

References

  1. Berman H, Henrick K, Nakamura H, Markley JL (2006) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35(suppl_1):D301–D303

    Google Scholar 

  2. Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Ann Rev Biophys Biomol Struct 26(1):113–137

    Article  CAS  Google Scholar 

  3. Chojnowski G, Waleń T, Bujnicki JM (2014) RNA bricks—a database of RNA 3D motifs and their interactions. Nucl Acids Res 42(D1):D123–D131

    Article  CAS  PubMed  Google Scholar 

  4. Coimbatore Narayanan B, Westbrook J, Ghosh S, Petrov AI, Sweeney B, Zirbel CL, Leontis NB, Berman HM (2013) The nucleic acid database: new features and capabilities. Nucl Acids Res 42(D1):D114–D122

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cruz JA, Westhof E (2011) Sequence-based identification of 3D structural modules in RNA with RMDetect. Nat Methods 8(6):513

    Article  CAS  PubMed  Google Scholar 

  6. Djelloul M, Denise A (2008) Automated motif extraction and classification in RNA tertiary structures. RNA 14(12):2489–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gendron P, Lemieux S, Major F (2001) Quantitative analysis of nucleic acid three-dimensional structures. J Mol Biol 308(5):919–936

    Article  CAS  PubMed  Google Scholar 

  8. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of rna secondary structures. Monatshefte für Chem/Chem Monthly 125(2):167–188

    Article  CAS  Google Scholar 

  9. Kalvari I, Argasinska J, Quinones-Olvera N, Nawrocki EP, Rivas E, Eddy SR, Bateman A, Finn RD, Petrov AI (2017) Rfam 13.0: shifting to a genome-centric resource for non-coding rna families. Nucl Acids Res 46(D1):D335–D342

    Article  PubMed Central  Google Scholar 

  10. Klein D, Schmeing T, Moore P, Steitz T (2001) The kink-turn: a new RNA secondary structure motif. EMBO J 20(15):4214–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leontis NB, Westhof E (2001) Geometric nomenclature and classification of RNA base pairs. RNA 7(4):499–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architecture. Current Opin Struct Biol 16(3):279–287

    Article  CAS  Google Scholar 

  13. Lorenz R, Bernhart SH, Zu Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) Viennarna package 2.0. Algorithms Mol Biol 6(1):26

    Google Scholar 

  14. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci 98(9):4899–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Petrov AI, Zirbel CL, Leontis NB (2013) Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas. RNA 19(10):1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reinharz V, Soulé A, Westhof E, Waldispühl J, Denise A (2018) Mining for recurrent long-range interactions in RNA structures reveals embedded hierarchies in network families. Nucl Acids Res 46(8):3833–3840. 10.1093/nar/gky19.

    Google Scholar 

  18. Sarrazin-Gendron R, Reinharz V, Oliver CG, Moitessier N, Waldispühl J (2019) Automated, customizable and efficient identification of 3D base pair modules with BayesPairing. Nucl Acids Res 47:3321–3332. 10.1093/nar/gkz102.

    Google Scholar 

  19. Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB (2008) FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J Math Biol 56(1-2):215–252

    Article  PubMed  Google Scholar 

  20. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152(1–2):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ (2006) Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441(7097):1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sievers F, Higgins DG (2014) Clustal omega. Current Protocols Bioinformat 48(1):3–13

    Article  Google Scholar 

  23. Thore S, Frick C, Ban N (2008) Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch. J Amer Chem Soc 130(26):8116–8117

    Article  CAS  Google Scholar 

  24. Waleń T, Chojnowski G, Gierski P, Bujnicki JM (2014) Clarna: a classifier of contacts in rna 3d structures based on a comparative analysis of various classification schemes. Nucl Acids Res 42(19):e151–e151

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang H, Jossinet F, Leontis N, Chen L, Westbrook J, Berman H, Westhof E (2003) Tools for the automatic identification and classification of RNA base pairs. Nucl Acids Res 31(13):3450–3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Reinharz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Sarrazin-Gendron, R., Waldispühl, J., Reinharz, V. (2024). Classification and Identification of Non-canonical Base Pairs and Structural Motifs. In: Lorenz, R. (eds) RNA Folding. Methods in Molecular Biology, vol 2726. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3519-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3519-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3518-6

  • Online ISBN: 978-1-0716-3519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics