Skip to main content

Classified Dynamic Programming in RNA Structure Analysis

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2726))

Abstract

Analysis of the folding space of RNA generally suffers from its exponential size. With classified Dynamic Programming algorithms, it is possible to alleviate this burden and to analyse the folding space of RNA in great depth. Key to classified DP is that the search space is partitioned into classes based on an on-the-fly computed feature. A class-wise evaluation is then used to compute class-wide properties, such as the lowest free energy structure for each class, or aggregate properties, such as the class’ probability. In this paper we describe the well-known shape and hishape abstraction of RNA structures, their power to help better understand RNA function and related methods that are based on these abstractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29:1105–1119

    Article  CAS  PubMed  Google Scholar 

  2. Hofacker IL et al. (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Für Chem Chem Mon 125:167–188

    Article  CAS  Google Scholar 

  3. Giegerich R, Voß B, Rehmsmeier M (2004) Abstract shapes of RNA. Nucl Acids Res 32:4843–4851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Giegerich R (2000) A systematic approach to dynamic programming in bioinformatics. Bioinformatics 16:665–677

    Article  CAS  PubMed  Google Scholar 

  5. Giegerich R, Meyer C, Steffen P (2004) A discipline of dynamic programming over sequence data. Sci Comput Programm 51:215–263

    Article  Google Scholar 

  6. Sauthoff G, Janssen S, Giegerich R (2011) Bellman’s GAP: a declarative language for dynamic programming. In: Proceedings of the 13th International ACM SIGPLAN Symposium on Principles and Practices of Declarative Programming. ACM, New York (2011), pp 29–40

    Google Scholar 

  7. Janssen S, Giegerich R (2015) The RNA shapes studio. Bioinformatics 31:423–425

    Article  CAS  PubMed  Google Scholar 

  8. Bellman R (1952) On the theory of dynamic programming. Proc Natl Acad Sci U S A 38:716–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellman R (1954) The theory of dynamic programming. Bull Amer Math Soc 60:503–515

    Article  Google Scholar 

  10. Bellman R (1957) Dynamic Programming, 1st edn. Princeton University Press, Princeton

    Google Scholar 

  11. Steffen P, Giegerich R (2005) Versatile and declarative dynamic programming using pair algebras. BMC Bioinformat 6:224

    Article  Google Scholar 

  12. Janssen S, Schudoma C, Steger G, Giegerich R, Lost in folding space? comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformat 12:429

    Google Scholar 

  13. Waterman MS (1995) Introduction to Computational Biology: Maps, Sequences and Genomes. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Lorenz W, Ponty Y, Clote P (2008) Asymptotics of RNA shapes. J Comput Biol 15:31–63

    Article  CAS  PubMed  Google Scholar 

  15. Nebel ME, Scheid A (2009) On quantitative effects of RNA shape abstraction. Theory Biosci 128:211

    Article  CAS  PubMed  Google Scholar 

  16. Voß B, Giegerich R, Rehmsmeier M (2006) Complete probabilistic analysis of RNA shapes. BMC Biol 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucl Acids Res 31:7280–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Janssen S, Giegerich R (2010) Faster computation of exact RNA shape probabilities. Bioinformatics 26:632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J Appl Math 45:810–825

    Article  Google Scholar 

  20. Mathews DH, Turner DH (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J Mol Biol 317:191–203

    Article  CAS  PubMed  Google Scholar 

  21. Havgaard JH, Lyngso RB, Gorodkin J (2005) The FOLDALIGN web server for pair-wise structural RNA alignment and mutual motif search. Nucl Acids Res 33(Suppl_2):W650–653

    Google Scholar 

  22. Will S, Otto C, Miladi M, Möhl M, Backofen R (2015) SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics. Bioinformatics btv185:2489–2496

    Article  Google Scholar 

  23. Hofacker IL, Fekete M, Stadler PF (2002) Secondary structure prediction for aligned RNA sequences. J Mol Biol 319:1059–1066

    Article  CAS  PubMed  Google Scholar 

  24. Voß B (2006) Structural analysis of aligned RNAs. Nucl Acids Res 34:5471–5481

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reeder J, Giegerich R (2005) Consensus shapes: an alternative to the Sankoff algorithm for RNA consensus structure prediction. Bioinformatics 21:3516–3523

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Backofen R, Voß B (2012) Abstract folding space analysis based on helices. RNA 18:2135–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shapiro BA, Zhang KZ (1990) Comparing multiple RNA secondary structures using tree comparisons. Comput Appl Biosci 6:309–318

    CAS  PubMed  Google Scholar 

  28. Flamm C, Fontana W, Hofacker IL, Schuster P (2000) RNA folding at elementary step resolution. RNA. 6:325–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flamm C, Hofacker IL, Maurer-Stroh S, Stadler PF, Zehl M (2001) Design of multistable RNA molecules. RNA 7:254–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  Google Scholar 

  31. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  CAS  PubMed  Google Scholar 

  32. Huang J, Voß B (2014) Analysing RNA-kinetics based on folding space abstraction. BMC Bioinformat 15:60

    Article  Google Scholar 

  33. Wolfinger MT, Svrcek-Seiler WA, Flamm C, Hofacker IL, Stadler PF (2004) Efficient computation of RNA folding dynamics. J Phys A Math Gen 37:4731

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Voß, B. (2024). Classified Dynamic Programming in RNA Structure Analysis. In: Lorenz, R. (eds) RNA Folding. Methods in Molecular Biology, vol 2726. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3519-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3519-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3518-6

  • Online ISBN: 978-1-0716-3519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics