Skip to main content

How Parameters Influence Shape-Directed Predictions

  • Protocol
  • First Online:
RNA Folding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2726))

  • 191 Accesses

Abstract

The structure of an rna sequence encodes information about its biological function. Dynamic programming algorithms are often used to predict the conformation of an rna molecule from its sequence alone, and adding experimental data as auxiliary information improves prediction accuracy. This auxiliary data is typically incorporated into the nearest neighbor thermodynamic model22 by converting the data into pseudoenergies. Here, we look at how much of the space of possible structures auxiliary data allows prediction methods to explore. We find that for a large class of rna sequences, auxiliary data shifts the predictions significantly. Additionally, we find that predictions are highly sensitive to the parameters which define the auxiliary data pseudoenergies. In fact, the parameter space can typically be partitioned into regions where different structural predictions predominate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940

    Article  CAS  PubMed  Google Scholar 

  2. Turner DH, Mathews DH (2009) NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res 38:D280–D282

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9(1):133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deigan KE, Li TW, Mathews DH, Weeks KM (2009) Accurate SHAPE-directed RNA structure determination. Proc Natl Acad Sci 106(1):97–102

    Article  CAS  PubMed  Google Scholar 

  5. Sükösd Z, Swenson MS, Kjems J, Heitsch CE (2013) Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res 41(5):2807–2816

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM et al (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3(1):2, 2002.

    Google Scholar 

  7. Barrera-Cruz F, Heitsch C, Poznanović S (2018) On the structure of RNA branching polytopes. SIAM J Appl Algebra Geom 2(3):444–461

    Article  Google Scholar 

  8. Mathuriya A, Bader DA, Heitsch CE, Harvey SC (2009) GTfold: a scalable multicore code for RNA secondary structure prediction. In 24th Annual ACM Symposium on Applied Computing

    Google Scholar 

  9. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures (the Vienna RNA package). Monatshefte für Chemie Chem Monthly 125(2):167–188

    Article  CAS  Google Scholar 

  10. Woese CR, Pace NR (1993) Probing RNA structure, function, and history by comparative analysis. In Gesteland RF, Atkins JF (eds) The RNA World, vol 24. Cold Spring Harbor Laboratory Press, pp 91–117

    Google Scholar 

  11. Gutell RR, Lee JC, Cannone JJ The accuracy of ribosomal RNA comparative structure models. Curr Opin Struct Biol 12(3):301–310

    Google Scholar 

  12. Rice GM, Leonard CW, Weeks KM (2014) RNA secondary structure modeling at consistent high accuracy using differential shape. RNA 20(6):846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cordero P, Lucks JB, Das R (2012) An RNA mapping database for curating RNA structure mapping experiments. Bioinformatics 28(22):3006–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zarringhalam K, Meyer MM, Dotu I, Chuang JH, Clote P (2012) Integrating chemical footprinting data into RNA secondary structure prediction. PLOS ONE 7(10):1–13

    Article  Google Scholar 

  15. Washietl S, Hofacker IL, Stadler PF, Kellis M (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res 40(10):4261–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eddy SR (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu Rev Biophys 43(1):433–456. PMID: 24895857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quarrier S, Martin JS, Davis-Neulander L, Beauregard A, Laederach A (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA 16(6):1108–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spasic A, Assmann SM, Bevilacqua PC, Mathews DH (2018) Modeling RNA secondary structure folding ensembles using SHAPE mapping data. Nucleic Acids Res 46(1):314–323

    Article  CAS  PubMed  Google Scholar 

  19. Wilkinson KA, Gorelick RJ, Vasa SM, Guex N, Rein A, Mathews DH, Giddings MC, Weeks KM (2008) High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states. PLoS Biol 6(4):e96

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hajdin CE, Bellaousov S, Huggins W, Leonard CW, Mathews DH, Weeks KM (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc Natl Acad Sci 110(14):5498–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess Jr JW, Swanstrom R, Burch CL, Weeks KM (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460(7256):711–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuker M (1989) Computer prediction of RNA structure. In: RNA Processing Part A: General Methods, volume 180 of Methods in Enzymology. Academic Press, New Yrok, pp 262–288

    Chapter  Google Scholar 

  23. Markham NR, Zuker M (2008) UNAFold. Methods Mol Biol 453:3–31

    Google Scholar 

  24. Xu ZZ, Mathews DH (2016) Secondary structure prediction of single sequences using rnastructure. Methods Mol Biol 1490:15–34

    Google Scholar 

  25. Lorenz R, Bernhart SH, Siederdissen CH, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA package 2.0. Algorithms Mol Biol 6:26–26

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leonard CW, Hajdin CE, Karabiber F, Mathews DH, Favorov OV, Dokholyan NV, Weeks KM. Principles for understanding the accuracy of SHAPE-directed RNA structure modeling. Biochemistry 52(4):588–595. PMID: 23316814

    Google Scholar 

  27. McCaskill JS (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29(6–7):1105–1119

    Article  CAS  PubMed  Google Scholar 

  28. Ding Y, Lawrence CE (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res 31(24):7280–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mathews DH (2006) Revolutions in RNA secondary structure prediction. J Mol Biol 359(3):526–532

    Article  CAS  PubMed  Google Scholar 

  30. Rogers E, Heitsch CE (2014) Profiling small RNA reveals multimodal substructural signals in a Boltzmann ensemble. Nucleic Acids Res 42(22):e171–e171

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Heitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Greenwood, T., Heitsch, C.E. (2024). How Parameters Influence Shape-Directed Predictions. In: Lorenz, R. (eds) RNA Folding. Methods in Molecular Biology, vol 2726. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3519-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3519-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3518-6

  • Online ISBN: 978-1-0716-3519-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics