Skip to main content

Systems Biology Approach to Analyze Microarray Datasets for Identification of Disease-Causing Genes: Case Study of Oral Squamous Cell Carcinoma

  • Protocol
  • First Online:
Reverse Engineering of Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2719))

  • 629 Accesses

Abstract

The discovery of potential disease-causing genes can aid medical progress. The post-genomic era has made this a more difficult task. Modern high-throughput methods have not solved the problem of identifying disease genes. Conventional methods cannot be used to investigate many rare or lethal diseases. Monitoring gene expression values in different samples using microarray technology is one of the best and most accurate ways to identify disease-causing genes. One of the most recent advances in experimental molecular biology is microarrays, which allow researchers to simultaneously monitor the expression levels of thousands of genes. Statistical analysis of microarray data might aid gene discovery by revealing pathways related to the target gene and facilitating identification of candidate genes. Systems biology, an interdisciplinary approach, has emerged as a crucial analytic tool with the potential to reveal previously unidentified causes and consequences of human illness. Genetic, environmental, immunological, or neurological factors have been implicated in the developing complex disorders like cancer. Because of this, it is important to approach the study of such disease from a novel perspective. The system biology approach allows us to rapidly identify disease-causing genes and assess their viability as therapeutic targets. This chapter demonstrates systems biology approaches to identify candidate genes using public database. Oral squamous cell carcinoma (OSCC) is used as a model disease to show how systems biology can be used successfully to identify and prioritize disease genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weaver R (2011) E-Book: molecular biology. McGraw Hill, New York

    Google Scholar 

  2. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  Google Scholar 

  3. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686

    Article  Google Scholar 

  4. Turanli B, Altay O, Borén J, Turkez H, Nielsen J, Uhlen M, Arga KY, Mardinoglu A (2021) Systems biology based drug repositioning for development of cancer therapy. Semin Cancer Biol 68:47–58. Academic Press

    Article  Google Scholar 

  5. Altay O, Nielsen J, Uhlen M, Boren J, Mardinoglu A (2019) Systems biology perspective for studying the gut microbiota in human physiology and liver diseases. EBioMedicine 49:364–373

    Article  Google Scholar 

  6. Lam S, Hartmann N, Benfeitas R, Zhang C, Arif M, Turkez H, Uhlén M, Englert C, Knight R, Mardinoglu A (2021) Systems analysis reveals ageing-related perturbations in retinoids and sex hormones in Alzheimer’s and Parkinson’s diseases. Biomedicines 9(10):1310

    Article  Google Scholar 

  7. Grizzle WE, Bel WC, Sexton KC (2010) Issues in collecting, processing and storing human tissues and associated information to support biomedical research. Cancer Biomark 9:531–549

    Article  Google Scholar 

  8. Khan FM, Marquardt S, Gupta SK, Knoll S, Schmitz U, Spitschak A, Engelmann D, Vera J, Wolkenhauer O, Pützer BM (2017) Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures. Nat Commun 8(1):198

    Article  Google Scholar 

  9. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  Google Scholar 

  10. Vera J, Schmitz U, Lai X, Engelmann D, Khan FM, Wolkenhauer O, Pützer BM (2013) Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network. Cancer Res 73:3511–3524

    Article  Google Scholar 

  11. Wentker P, Eberhardt M, Dreyer FS, Bertrams W, Cantone M, Griss K, Schmeck B, Vera J (2017) An interactive macrophage signal transduction map facilitates comparativeanalyses of high-throughput data. J Immunol 198:2191–2201

    Article  Google Scholar 

  12. Choudhari JK, Chatterjee T, Gupta SK, Garcia-Garcia JG, Vera J (2020) Network biology approaches in ophthalmological diseases: a case study of glaucoma. In: Wolkenhauer O (ed) Systems medicine, Methods: integrative, qualitative and computational approaches, vol 1, pp 190–202

    Google Scholar 

  13. Dumas M-E, Kinross J, Nicholson JK (2014) Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146:46–62

    Article  Google Scholar 

  14. Choudhari JK, Verma MK, Choubey J, Sahariah BP (2021) Investigation of MicroRNA and transcription factor mediated regulatory network for silicosis using systems biology approach. Sci Rep 11(1):1–9

    Article  Google Scholar 

  15. Team RDC (2009) A language and environment for statistical computing. http://www.R-project.org

  16. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  Google Scholar 

  17. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995

    Article  Google Scholar 

  18. Szklarczyk D, Gable A, Lyon D (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  Google Scholar 

  19. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  Google Scholar 

  20. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45(W1):W98–W102

    Article  Google Scholar 

  21. Janky RS, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, Hulselmans G, Herten K, Naval Sanchez M, Potier D, Svetlichnyy D (2014) iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 10(7):e1003731

    Article  Google Scholar 

  22. Sticht C, De La Torre C, Parveen A, Gretz N (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13(10):e0206239

    Article  Google Scholar 

  23. Zhou G, Soufan O, Ewald J, Hancock RE, Basu N, Xia J (2019) NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 47(W1):W234–W241

    Article  Google Scholar 

  24. Diboun I, Wernisch L, Orengo CA, Koltzenburg M (2006) Microarray analysis after RNA amplification can detect pronounced differences in gene expression using limma. BMC Genomics 7(1):1–4

    Article  Google Scholar 

  25. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(9):1–11

    Article  Google Scholar 

  26. Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M (2008) Computing topological parameters of biological networks. Bioinformatics 24:282–284

    Article  Google Scholar 

  27. Hsing M, Byler KG, Cherkasov A (2008) The use of gene ontology terms for predicting highly connected ‘hub’ nodes in protein-protein interaction networks. BMC Syst Biol 2(1):1–14

    Article  Google Scholar 

  28. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) CytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(4):1–7

    Google Scholar 

  29. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46(D1):D296–D302

    Article  Google Scholar 

  30. Wong N, Wang X (2015) miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43(D1):D146–D152

    Article  Google Scholar 

  31. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:e05005

    Article  Google Scholar 

  32. Kaplun A, Krull M, Lakshman K, Matys V, Lewicki B, Hogan JD (2016) Establishing and validating regulatory regions for variant annotation and expression analysis. BMC Genomics 17:219–227

    Article  Google Scholar 

  33. The ENCODE Project Consortium (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9(4):e1001046

    Article  Google Scholar 

  34. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082

    Article  Google Scholar 

  35. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):1–9

    Article  Google Scholar 

  36. Mullany LE, Herrick JS, Wolff RK, Stevens JR, Samowitz W, Slattery ML (2018) MicroRNA-transcription factor interactions and their combined effect on target gene expression in colon cancer cases. Genes Chromosom Cancer 57(4):192–202

    Article  Google Scholar 

  37. Zhao Q, Liu H, Yao C, Shuai J, Sun X (2016) Effect of dynamic interaction between microRNA and transcription factor on gene expression. Biomed Res Int 2016:2676282

    Article  Google Scholar 

  38. Mahmud SH, Chen W, Liu Y, Awal MA, Ahmed K, Rahman MH, Moni MA (2021) PreDTIs: prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques. Brief Bioinform 22(5):bbab046

    Article  Google Scholar 

  39. Lee CH, Chang JS, Syu SH, Wong TS, Chan JY, Tang YC, Yang ZP, Yang WC, Chen CT, Lu SC, Tang PH (2015) IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol 230(4):875–884

    Article  Google Scholar 

  40. De Las RJ, Fontanillo C (2010) Protein–protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):e1000807

    Article  Google Scholar 

  41. Pellegrini M, Haynor D, Johnson JM (2004) Protein interaction networks. Expert Rev Proteomics 1(2):239–249

    Article  Google Scholar 

  42. Slezakprochazka I, Durmus S, Kroesen BJ, Van den Berg A (2010) MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 16(6):1087–1095

    Article  Google Scholar 

  43. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25(21):2227–2241

    Article  Google Scholar 

  44. Delfino KR, Rodriguez-Zas SL (2013) Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence. PLoS One 8(3):e58608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Choubey, J., Wolkenhauer, O., Chatterjee, T. (2024). Systems Biology Approach to Analyze Microarray Datasets for Identification of Disease-Causing Genes: Case Study of Oral Squamous Cell Carcinoma. In: Mandal, S. (eds) Reverse Engineering of Regulatory Networks. Methods in Molecular Biology, vol 2719. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3461-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3461-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3460-8

  • Online ISBN: 978-1-0716-3461-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics