Skip to main content

Molecular Modeling Techniques and In-Silico Drug Discovery

  • Protocol
  • First Online:
Reverse Engineering of Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2719))

Abstract

Molecular modeling is the technique to determine the overall structure of an unknown molecule, be it a small one or a macromolecule. The technique encompasses the method of screening ligand libraries for the development of new candidate drug molecules. All these aspects have become an essential topic of research. This field is truly interdisciplinary and finds its applications in almost all fields of life science research. In this chapter, an overview of the protocol associated with molecular modeling techniques will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blaxter M (2003) In: Barnes MR, Grey IC (eds) Bioinformatics for geneticists. Wiley, Chichester

    Google Scholar 

  2. Cherkasov A (2005) In: Baxevanis AD, Ouellette BFF (eds) Bioinformatics: a practical guide to the analysis of genes and proteins, 3rd edn. Wiley, Hoboken

    Google Scholar 

  3. Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  4. Xiong J (2006) Essential bioinformatics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Pevzner P (2000) Computational molecular biology: an algorithmic approach. MIT Press, Massachusetts

    Book  MATH  Google Scholar 

  6. Stevens H (2019) Life out of sequence: a data-driven history of bioinformatics. University of Chicago Press, Chicago

    Google Scholar 

  7. Pachter L, Sturmfels B (eds) (2005) Algebraic statistics for computational biology, vol 13. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  8. Cristianini N, Hahn M (2006) Introduction to computational genomics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Nisbet R, Elder J, Miner GD (2009) Handbook of statistical analysis and data mining applications. Academic Press, Massachusetts

    MATH  Google Scholar 

  10. Wong KC (2016) Computational biology and bioinformatics: gene regulation. CRC Press/Taylor & Francis Group, Florida

    Book  Google Scholar 

  11. Leach AR (2009) Molecular modelling: principles and applications. Pearson Prentice Hall, New Jersey

    Google Scholar 

  12. Heinz H, Ramezani-Dakhel H (2016) Simulations of inorganic-bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem Soc Rev 45(2):412–448

    Article  Google Scholar 

  13. Parsons J, Holmes JB, Rojas JM, Tsa J, Strauss CE (2005) Practical conversion from torsion space to Cartesian space for in silico protein synthesis. J Comput Chem 26(10):1063–1068

    Article  Google Scholar 

  14. Stephan S, Horsch MT, Vrabec J, Hasse H (2019) MolMod – an open access database of force fields for molecular simulations of fluids. Mol Simul 45(10):806–814

    Article  Google Scholar 

  15. Eggimann BL, Sunnarborg AJ, Stern HD, Bliss AP, Siepmann JI (2014) An online parameter and property database for the TraPPE force field. Mol Simul 40(1–3):101–105

    Article  Google Scholar 

  16. Silakari O, Singh PK (2021) Fundamentals of molecular modeling. Fundamentals of molecular modeling. In: Concepts and experimental protocols of modelling and informatics in drug design. Academic Press, Massachusetts, pp 1–27

    Google Scholar 

  17. Forster MJ (2002) Molecular modelling in structural biology. Micron 33(4):365–384

    Article  Google Scholar 

  18. Gu J, Bourne PE (eds) (2009) Structural bioinformatics, vol 44. Wiley-Blackwell, Hoboken, New Jersey

    Google Scholar 

  19. Peitsch MC, Schwede T (2008) Computational structural biology: methods and applications. World Scientific, Singapore

    Google Scholar 

  20. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating molecular modeling applications with graphics processors. J Comput Chem 28(16):2618–2640

    Article  Google Scholar 

  21. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  Google Scholar 

  22. Kaczanowski S, Zielenkiewicz P (2010) Why similar protein sequences encode similar three-dimensional structures? Theor Chem Accounts 125(3–6):643–650

    Article  Google Scholar 

  23. Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  Google Scholar 

  24. Zhang Y, Skolnick J (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A 102(4):1029–1034

    Article  Google Scholar 

  25. Weng G (2002) Exploring protein-protein interactions by peptide docking protocols. Methods Enzymol 344:577–586

    Article  Google Scholar 

  26. Ramachandran KI, Deepa G, Krishnan Namboori PK (2008) Computational chemistry and molecular modeling principles and applications. Springer-Verlag GmbH

    Google Scholar 

  27. McGreig JE, Uri H, Antczak M, Sternberg MJ, Michaelis M, Wass MN (2022) 3DLigandSite: structure-based prediction of protein–ligand binding sites. Nucleic Acids Res 50(W1):W13–W20

    Article  Google Scholar 

  28. Siebenmorgen T, Zacharias M (2020) Computational prediction of protein–protein binding affinities. WIREs Comput Mol Sci 10:e1448

    Article  Google Scholar 

  29. Muhammed MT, Aki-Yalcin E (2018) Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 93(1):12–20

    Article  Google Scholar 

  30. Pan AC, Borhani DW, Dror RO, Shaw DE (2013) Molecular determinants of drug–receptor binding kinetics. Drug Discov Today 18(13–14):667–673

    Article  Google Scholar 

  31. Alberts B, Bray D, Hopkin K, Johnson AD, Lewis J, Raff M, Roberts K, Walter P (2015) Essential cell biology. Garland Science, New York City

    Google Scholar 

  32. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35(10):539–546

    Article  Google Scholar 

  33. Copeland RA (2013) Drug–target residence time. In: Evaluation of enzyme inhibitors in drug discovery. Wiley

    Chapter  Google Scholar 

  34. Miller DC, Lunn G, Jones P, Sabnis Y, Davies NL, Driscoll P (2012) Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. Med Chem Comm 3(4):449–452

    Article  Google Scholar 

  35. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press, Oxford

    MATH  Google Scholar 

  36. Frenkel D, Smit B, Ratner MA (1996) Understanding molecular simulation: from algorithms to applications, vol 2. Academic Press, San Diego

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank DBT-funded BIF center (Sanction no.: BT/PR40162/BTIS/137/48/2022) for the infrastructural support. Support from UGC-SAP-DRS-II, DST-PURSE2, and the University of Kalyani are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Bagchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bagchi, A. (2024). Molecular Modeling Techniques and In-Silico Drug Discovery. In: Mandal, S. (eds) Reverse Engineering of Regulatory Networks. Methods in Molecular Biology, vol 2719. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3461-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3461-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3460-8

  • Online ISBN: 978-1-0716-3461-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics