Skip to main content

Brain Imaging and Registration in Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

  • 1203 Accesses

Abstract

Registration of larval zebrafish brain scans to a common reference brain enables comparison of transgene and gene expression patterns, neuroanatomy, and morphometry. Here we describe methods for staining and mounting larval zebrafish to facilitate whole-brain fluorescence imaging. Following image acquisition, we provide a template for aligning brain images to a reference atlas using nonlinear registration with the ANTs software package.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Marquart GD, Tabor KM, Horstick EJ et al (2017) High precision registration between zebrafish brain atlases using symmetric diffeomorphic normalization. Gigascience 6. https://doi.org/10.1093/gigascience/gix056

  2. Rohlfing T, Maurer CR Jr (2003) Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees. IEEE Trans Inf Technol Biomed 7:16–25

    Article  PubMed  Google Scholar 

  3. Portugues R, Feierstein CE, Engert F, Orger MB (2014) Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior. Neuron 81:1328–1343. https://doi.org/10.1016/j.neuron.2014.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kenney JW, Steadman PE, Young O et al (2021) A 3D adult zebrafish brain atlas (AZBA) for the digital age. elife 10:e69988. https://doi.org/10.7554/eLife.69988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12:26–41. https://doi.org/10.1016/j.media.2007.06.004

    Article  CAS  PubMed  Google Scholar 

  6. Heffer A, Marquart GD, Aquilina-Beck A et al (2017) Generation and characterization of Kctd15 mutations in zebrafish. PLoS One 12:e0189162. https://doi.org/10.1371/journal.pone.0189162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Randlett O, Wee CL, Naumann EA et al (2015) Whole-brain activity mapping onto a zebrafish brain atlas. Nat Methods 12:1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi HMT, Schwarzkopf M, Fornace ME et al (2018) Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development 145:dev165753. https://doi.org/10.1242/dev.165753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trivellin G, Tirosh A, Hernández-Ramírez LC et al (2021) The X-linked acrogigantism-associated gene gpr101 is a regulator of early embryonic development and growth in zebrafish. Mol Cell Endocrinol 520:111091. https://doi.org/10.1016/j.mce.2020.111091

    Article  CAS  PubMed  Google Scholar 

  10. Satou C, Kimura Y, Higashijima S (2012) Generation of multiple classes of V0 neurons in zebrafish spinal cord: progenitor heterogeneity and temporal control of neuronal diversity. J Neurosci 32:1771–1783. https://doi.org/10.1523/JNEUROSCI.5500-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta T, Marquart GD, Horstick EJ et al (2018) Morphometric analysis and neuroanatomical mapping of the zebrafish brain. Methods 150:49–62. https://doi.org/10.1016/j.ymeth.2018.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Geng Y, Peterson RT (2021) Rapid mounting of zebrafish larvae for brain imaging. Zebrafish 18:376–379. https://doi.org/10.1089/zeb.2021.0062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma L-H, Gilland E, Bass AH, Baker R (2010) Ancestry of motor innervation to pectoral fin and forelimb. Nat Commun 1:49. https://doi.org/10.1038/ncomms1045

    Article  CAS  PubMed  Google Scholar 

  14. Marquart GD, Tabor KM, Brown M et al (2015) A 3D searchable database of transgenic zebrafish Gal4 and Cre Lines for functional neuroanatomy studies. Front Neural Circ 9:78. https://doi.org/10.3389/fncir.2015.00078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) and utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhandiwad, A.A., Gupta, T., Subedi, A., Heigh, V., Holmes, G.A., Burgess, H.A. (2024). Brain Imaging and Registration in Larval Zebrafish. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics