Skip to main content

Functional Genomics of Novel Rhabdomyosarcoma Fusion-Oncogenes Using Zebrafish

  • Protocol
  • First Online:
Zebrafish

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2707))

Abstract

Clinical sequencing efforts continue to identify novel putative oncogenes with limited strategies to perform functional validation in vivo and study their role in tumorigenesis. Here, we present a pipeline for fusion-driven rhabdomyosarcoma (RMS) in vivo modeling using transgenic zebrafish systems. This strategy originates with novel fusion-oncogenes identified from patient samples that require functional validation in vertebrate systems, integrating these genes into the zebrafish genome, and then characterizing that they indeed drive rhabdomyosarcoma tumor formation. In this scenario, the human form of the fusion-oncogene is inserted into the zebrafish genome to understand if it is an oncogene, and if so, the underlying mechanisms of tumorigenesis. This approach has been successful in our models of infantile rhabdomyosarcoma and alveolar rhabdomyosarcoma, both driven by respective fusion-oncogenes, VGLL2-NCOA2 and PAX3-FOXO1. Our described zebrafish platform is a rapid method to understand the impact of fusion-oncogene activity, divergent and shared fusion-oncogene biology, and whether any analyzed pathways converge for potential clinically actionable targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245

    Article  CAS  PubMed  Google Scholar 

  2. Mitelman F, Johansson B, Mertens F (2021). Mitelman database of chromosome aberrations and gene fusions in cancer. https://mitelmandatabase.isb-cgc.org

  3. Mertens F, Antonescu CR, Mitelman F (2016) Gene fusions in soft tissue tumors: recurrent and overlapping pathogenetic themes. Genes Chromosomes Cancer 55:291–310

    Article  CAS  PubMed  Google Scholar 

  4. Watson S, Perrin V, Guillemot D et al (2018) Transcriptomic definition of molecular subgroups of small round cell sarcomas. J Pathol 245:29–40

    Article  CAS  PubMed  Google Scholar 

  5. Barr FG, Galili N, Holick J et al (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3:113–117

    Article  CAS  PubMed  Google Scholar 

  6. Davis RJ, D’Cruz CM, Lovell MA et al (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–2872

    CAS  PubMed  Google Scholar 

  7. Shern JF, Chen L, Chmielecki J et al (2014) Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov 4:216–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kashi VP, Hatley ME, Galindo RL (2015) Probing for a deeper understanding of rhabdomyosarcoma: insights from complementary model systems. Nat Rev Cancer 15:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amatruda JF (2021) Modeling the developmental origins of pediatric cancer to improve patient outcomes. Dis Model Mech 14

    Google Scholar 

  10. Patton EE, Zon LI, Langenau DM (2021) Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov 20:611–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watson S, LaVigne C, Xu L et al (2023) VGLL2-NCOA2 leverages developmental programs for pediatric sarcomagenesis. Cell Rep 42

    Google Scholar 

  13. Kendall GC, Watson S, Xu L et al (2018) PAX3-FOXO1 transgenic zebrafish models identify HES3 as a mediator of rhabdomyosarcoma tumorigenesis. elife 7

    Google Scholar 

  14. Langenau DM, Keefe MD, Storer NY et al (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21:1382–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leacock SW, Basse AN, Chandler GL et al (2012) A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 5:95–106

    Article  CAS  PubMed  Google Scholar 

  16. Watson S, Kendall GC, Rakheja D et al (2019) CIC-DUX4 expression drives the development of small round cell sarcoma in transgenic zebrafish: a new model revealing a role for ETV4 in CIC-mediated sarcomagenesis. bioRxiv

    Google Scholar 

  17. Berghmans S, Murphey RD, Wienholds E et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keller C, Arenkiel BR, Coffin CM et al (2004) Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 18:2614–2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawakami K, Takeda H, Kawakami N et al (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144

    Article  CAS  PubMed  Google Scholar 

  20. Urasaki A, Morvan G, Kawakami K (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174:639–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kwan KM, Fujimoto E, Grabher C et al (2007) The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236:3088–3099

    Article  CAS  PubMed  Google Scholar 

  22. Pounds S, Gao CL, Johnson RA et al (2011) A procedure to statistically evaluate agreement of differential expression for cross-species genomics. Bioinformatics 27:2098–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Talbot JC, Amacher SL (2014) A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11:583–585

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

J.K. is supported by a Graduate Student Research Award from the Abigail Wexner Research Institute’s Trainee Association at Nationwide Children’s Hospital. D.C is supported by a Graduate Enrichment Fellowship from The Ohio State University. G.C.K is supported by an Alex’s Lemonade Stand Foundation “A” Award and a V Foundation for Cancer Research V Scholar Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genevieve C. Kendall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kent, M.R., Silvius, K., Kucinski, J., Calderon, D., Kendall, G.C. (2024). Functional Genomics of Novel Rhabdomyosarcoma Fusion-Oncogenes Using Zebrafish. In: Amatruda, J.F., Houart, C., Kawakami, K., Poss, K.D. (eds) Zebrafish. Methods in Molecular Biology, vol 2707. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3401-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3401-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3400-4

  • Online ISBN: 978-1-0716-3401-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics