Skip to main content

Construction of Naïve and Immune Human Fab Phage Display Library

  • Protocol
  • First Online:
Phage Display

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2702))

Abstract

Phage display has been applied successfully for the rapid isolation of monoclonal antibodies against various targets including infectious diseases, autoantigens, cancer markers, and even small molecules. The main component in any phage display experiment is the availability of an antibody library to carry out the selection process of target-specific antibodies through an iterative process termed as biopanning. To generate human antibody libraries, the antibody repertoire can be obtained from human peripheral blood mononuclear cell (PBMC) or directly from cell-sorted B-cell populations. The choice of antibody isotype is dictated by the nature of the library. Naïve libraries would utilize IgM repertoires, whereas the IgG repertoire is commonly used for immune libraries. Antibody genes are amplified through polymerase chain reaction (PCR) and paired in a combinatorial fashion to expand the diversity of the cloned library repertoire. The protocol here describes the use of a two-step cloning method that can be applied for the construction of either a naïve or immune human antibody library in Fab format followed by the subsequent panning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317. https://doi.org/10.1126/science.4001944

    Article  CAS  PubMed  Google Scholar 

  2. McCafferty J, Griffiths AD, Winter G et al (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554. https://doi.org/10.1038/348552a0

    Article  CAS  PubMed  Google Scholar 

  3. Breitling F, Dübel S, Seehaus T et al (1991) A surface expression vector for antibody screening. Gene 104(2):147–153. https://doi.org/10.1016/0378-1119(91)90244-6

    Article  CAS  PubMed  Google Scholar 

  4. Soumillion P, Jespers L, Bouchet M et al (1994) Selection of beta-lactamase on filamentous bacteriophage by catalytic activity. J Mol Biol 237(4):415–422. https://doi.org/10.1006/jmbi.1994.1244

    Article  CAS  PubMed  Google Scholar 

  5. Love KR, Swoboda JG, Noren CJ et al (2006) Enabling glycosyltransferase evolution: a facile substrate-attachment strategy for phage-display enzyme evolution. ChemBioChem 7(5):753–756. https://doi.org/10.1002/cbic.200600018

    Article  CAS  PubMed  Google Scholar 

  6. Zhao N, Schmitt MA, Fisk JD (2016) Phage display selection of tight specific binding variants from a hyperthermostable sso7d scaffold protein library. FEBS J 283(7):1351–1367. https://doi.org/10.1111/febs.13674

    Article  CAS  PubMed  Google Scholar 

  7. Lawrie J, Waldrop S, Morozov A et al (2021) Engineering of a small protein scaffold to recognize sulfotyrosine with high specificity. ACS Chem Biol 16(8):1508–1517. https://doi.org/10.1021/acschembio.1c00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zuo S, Dai G, Wang L et al (2019) Suppression of angiogenesis and tumor growth by recombinant t4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2. Arch Virol 164(1):69–82. https://doi.org/10.1007/s00705-018-4026-0

    Article  CAS  PubMed  Google Scholar 

  9. Hoogenboom HR, Griffiths AD, Johnson KS et al (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (fab) heavy and light chains. Nucleic Acids Res 19(15):4133–4137. https://doi.org/10.1093/nar/19.15.4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Omar N, Hamidon NH, Yunus MH et al (2018) Generation and selection of naïve fab library for parasitic antigen: anti-bmsxp antibodies for lymphatic filariasis. Biotechnol Appl Biochem 65(3):346–354. https://doi.org/10.1002/bab.1591

    Article  CAS  PubMed  Google Scholar 

  11. Pan Y, Du J, Liu J et al (2021) Screening of potent neutralizing antibodies against sars-cov-2 using convalescent patients-derived phage-display libraries. Cell Discov 7(1):57. https://doi.org/10.1038/s41421-021-00295-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dong S, Guan L, He K et al (2021) Screening of anti-idiotypic domain antibody from phage library for development of bt cry1a simulants. Int J Biol Macromol 183:1346–1351. https://doi.org/10.1016/j.ijbiomac.2021.05.093

    Article  CAS  PubMed  Google Scholar 

  13. Chan SK, Rahumatullah A, Lai JY et al (2017) Naïve human antibody libraries for infectious diseases. In: Lim TS (ed) Recombinant antibodies for infectious diseases. Springer, Cham, pp 35–59. https://doi.org/10.1007/978-3-319-72077-7_3

    Chapter  Google Scholar 

  14. Weill J-C, Reynaud C-A (2020) Igm memory b cells: specific effectors of innate-like and adaptive responses. Curr Opin Immunol 63:1–6. https://doi.org/10.1016/j.coi.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  15. Vaughan TJ, Williams AJ, Pritchard K et al (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. https://doi.org/10.1038/nbt0396-309

    Article  CAS  PubMed  Google Scholar 

  16. Roth KDR, Wenzel EV, Ruschig M et al (2021) Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Front Cell Infect Microbiol 11:617

    Article  Google Scholar 

  17. Lai JY, Lim TS (2020) Infectious disease antibodies for biomedical applications: a mini review of immune antibody phage library repertoire. Int J Biol Macromol 163:640–648. https://doi.org/10.1016/j.ijbiomac.2020.06.268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Almagro JC, Pedraza-Escalona M, Arrieta HI et al (2019) Phage display libraries for antibody therapeutic discovery and development. Antibodies 8(3):44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shim H (2017) Antibody phage display. Adv Exp Med Biol 1053:21–34. https://doi.org/10.1007/978-3-319-72077-7_2

    Article  CAS  PubMed  Google Scholar 

  20. Feng M, Bian H, Wu X et al (2019) Construction and next-generation sequencing analysis of a large phage-displayed vnar single-domain antibody library from six naive nurse sharks. Antib Ther 2(1):1–11

    PubMed  Google Scholar 

  21. Kang AS, Barbas CF, Janda KD et al (1991) Linkage of recognition and replication functions by assembling combinatorial antibody fab libraries along phage surfaces. Proc Natl Acad Sci U S A 88(10):4363–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steinwand M, Droste P, Frenzel A et al (2014) The influence of antibody fragment format on phage display based affinity maturation of igG. mAbs 6(1):204–218. https://doi.org/10.4161/mabs.27227

    Article  PubMed  Google Scholar 

  23. Bates A, Power CA (2019) David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies 8(2):28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nannini F, Parekh F, Wawrzyniecka P et al (2020) A primer set for the rapid isolation of scfv fragments against cell surface antigens from immunised rats. Sci Rep 10(1):19168. https://doi.org/10.1038/s41598-020-76069-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahumatullah A, Ahmad A, Noordin R et al (2015) Delineation of bmsxp antibody v-gene usage from a lymphatic filariasis based immune scFv antibody library. Mol Immunol 67(2, Part B):512–523. https://doi.org/10.1016/j.molimm.2015.07.040

    Article  CAS  PubMed  Google Scholar 

  26. Huovinen T, Brockmann E-C, Akter S et al (2012) Primer extension mutagenesis powered by selective rolling circle amplification. PLoS One 7(2):e31817. https://doi.org/10.1371/journal.pone.0031817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shahsavarian MA, Le Minoux D, Matti KM et al (2014) Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries. J Immunol Methods 407:26–34. https://doi.org/10.1016/j.jim.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  28. Chockalingam K, Peng Z, Vuong CN et al (2020) Golden gate assembly with a bi-directional promoter (gbid): a simple, scalable method for phage display fab library creation. Sci Rep 10(1):2888. https://doi.org/10.1038/s41598-020-59745-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheets MD, Amersdorfer P, Finnern R et al (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95(11):6157–6162. https://doi.org/10.1073/pnas.95.11.6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Haard HJ, van Neer N, Reurs A et al (1999) A large non-immunized human fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274(26):18218–18230. https://doi.org/10.1074/jbc.274.26.18218

    Article  PubMed  Google Scholar 

  31. Erasmus MF, D’Angelo S, Ferrara F et al (2021) A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol 4(1):350. https://doi.org/10.1038/s42003-021-01881-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Universiti Sains Malaysia, Special (Matching) Short-Term Grant with Project No: 304/CIPPM/6315708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theam Soon Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lai, J.Y., Lim, T.S. (2023). Construction of Naïve and Immune Human Fab Phage Display Library. In: Hust, M., Lim, T.S. (eds) Phage Display. Methods in Molecular Biology, vol 2702. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3381-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3381-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3380-9

  • Online ISBN: 978-1-0716-3381-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics