Skip to main content

Inverse PCR for Site-Directed Mutagenesis

  • Protocol
  • First Online:
PCR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2967))

Abstract

Inverse PCR is a powerful tool for the rapid introduction of desired mutations at desired positions in a circular double-stranded DNA sequence. In this technique, custom-designed mutant primers oriented in the inverse direction are used to amplify the entire circular template with incorporation of the required mutation(s). By careful primer design, it can be used to perform such diverse modifications as the introduction of point or multiple mutations, the insertion of new sequences, and even sequence deletions. Three primer formats are commonly used, nonoverlapping, partially overlapping, and fully overlapping primers, and here we describe the use of nonoverlapping primers for introduction of a point mutation. Use of such a primer setup in the PCR, with one of the primers containing the desired mismatch mutation, results in the amplification of a linear, double-stranded, mutated product. Methylated template DNA is removed from the non-methylated PCR product by DpnI digestion, and the PCR product is then phosphorylated by polynucleotide kinase treatment before being recircularized by ligation and transformed to E. coli. This relatively simple site-directed mutagenesis procedure is of major importance in biology and biotechnology where it is commonly employed for the study and engineering of DNA, RNA, and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burdick JP, Basi RS, Burns KS, Weers PMM (1865) The role of C-terminal ionic residues in self-association of apolipoprotein A-I. Biochim Biophys Acta Biomembr 2023:184098. https://doi.org/10.1016/j.bbamem.2022.184098

    Article  CAS  Google Scholar 

  2. Dahhas MA, Alsenaidy MA (2022) Role of site-directed mutagenesis and adjuvants in the stability and potency of anthrax protective antigen. Saudi Pharm J 30:595–604. https://doi.org/10.1016/j.jsps.2022.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang L, Gu J, Zhao W, Wang M, Ng KR, Lyu X, Yang R (2022) Reshaping the binding pocket of cellobiose 2-epimerase for improved substrate affinity and isomerization activity for enabling green synthesis of lactulose. J Agric Food Chem 70:15879–15893. https://doi.org/10.1021/acs.jafc.2c06980

    Article  CAS  PubMed  Google Scholar 

  4. Chen K, Zhang M, Gao B, Hasan A, Li J, Bao Y, Fan J, Yu R, Yi Y, Ågren H, Wang Z, Liu H, Ye M, Qiao X (2022) Characterization and protein engineering of glycosyltransferases for the biosynthesis of diverse hepatoprotective cycloartane-type saponins in Astragalus membranaceus. Plant Biotechnol J 21:698. https://doi.org/10.1111/pbi.13983

    Article  CAS  Google Scholar 

  5. Sanguinetti M, Silva Santos LH, Dourron J, Alamón C, Idiarte J, Amillis S, Pantano S, Ramón A (2022) Substrate recognition properties from an intermediate structural state of the UreA transporter. Int J Mol Sci 23:16039. https://doi.org/10.3390/ijms232416039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang K-D, Dughbaj MA, Nguyen TTV, Nguyen TQY, Oza S, Valdez K, Anda P, Waltz J, Sacco MA (2023) Systematic mutagenesis of Polerovirus protein P0 reveals distinct and overlapping amino acid functions in Nicotiana glutinosa. Virology 578:24–34. https://doi.org/10.1016/j.virol.2022.11.005

    Article  CAS  PubMed  Google Scholar 

  7. Collins T, De Vos D, Hoyoux A, Savvides SN, Gerday C, Van Beeumen J, Feller G (2005) Study of the active site residues of a glycoside hydrolase family 8 xylanase. J Mol Biol 354:425–435. https://doi.org/10.1016/j.jmb.2005.09.064

    Article  CAS  PubMed  Google Scholar 

  8. Hutchison CA, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560

    Article  CAS  PubMed  Google Scholar 

  9. Edgell MH, Hutchison CA 3rd, Sclair M (1972) Specific endonuclease R fragments of bacteriophage phiX174 deoxyribonucleic acid. J Virol 9:574–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hutchison CA 3rd, Edgell MH (1971) Genetic assay for small fragments of bacteriophage phi X174 deoxyribonucleic acid. J Virol 8:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reeves AR (2016) In Vitro Mutagenesis. Methods Protocol:1–796

    Google Scholar 

  12. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  CAS  PubMed  Google Scholar 

  13. Das N, Ghosh Dhar D, Dhar P (2022) Editing the genome of common cereals (rice and wheat): techniques, applications, and industrial aspects. Mol Biol Rep:1–9. https://doi.org/10.1007/S11033-022-07664-Y/TABLES/2

  14. Forner J, Kleinschmidt D, Meyer EH, Fischer A, Morbitzer R, Lahaye T, Schöttler MA, Bock R (2022) Targeted introduction of heritable point mutations into the plant mitochondrial genome. Nat Plants 8:245–256. https://doi.org/10.1038/s41477-022-01108-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo J, Zeng L, Chen H, Ma C, Tu J, Shen J, Wen J, Fu T, Yi B (2022) CRISPR/Cas9-mediated targeted mutagenesis of BnaCOL9 advances the flowering time of Brassica napus L. Int J Mol Sci 23:14944. https://doi.org/10.3390/ijms232314944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16:7351–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Triglia T, Peterson MG, Kemp DJ (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16:8186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hemsley A, Arnheim N, Toney MD, Cortopassi G, Galas DJ (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 17:6545–6551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qi D, Scholthof KB (2008) A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J Virol Methods 149:85–90. https://doi.org/10.1016/j.jviromet.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  21. Zheng L, Baumann U, Reymond JL (2004) An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 32:e115. https://doi.org/10.1093/nar/gnh110

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu H, Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91. https://doi.org/10.1186/1472-6750-8-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xia Y, Chu W, Qi Q, Xun L (2015) New insights into the QuikChange process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res 43:e12. https://doi.org/10.1093/nar/gku1189

    Article  CAS  PubMed  Google Scholar 

  24. Silva D, Santos G, Barroca M, Collins T (2017) Inverse PCR for point mutation introduction. In: Domingues L (ed) PCR. Methods and protocols, Springer protocols. Methods in molecular biology, 1st edn. Springer New York, New York, pp 87–100. https://doi.org/10.1007/978-1-4939-7060-5_5

    Chapter  Google Scholar 

Download references

Acknowledgments

The European Regional Development Fund (ERDF) is thanked for funding in the scope of Programa Operacional Regional do Norte (NORTE 2020) through the project ATLANTIDA (NORTE-01-0145-FEDER-000040). The FCT (Fundação para a Ciência e a Tecnologia) is thanked for funding through the “Contrato-Programa” UIDB/04050/2020.

All the technical staff at the CBMA are thanked for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silva, D., Santos, G., Barroca, M., Costa, D., Collins, T. (2023). Inverse PCR for Site-Directed Mutagenesis. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 2967. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3358-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3358-8_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3357-1

  • Online ISBN: 978-1-0716-3358-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics