Skip to main content

The Concept of Event-Related Oscillations: A Spotlight on Extended Applications

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

  • 667 Accesses

Abstract

Event-related neuroelectric oscillations have provided important tools for exploring information processing in the brain. The concept of event-related oscillations (EROs) is linked to that of event-related potentials (ERPs). Both the ERPs and EROs are derived from electroencephalographic (EEG) recordings following the appearance of an event. There are, however, several essential advantages of the ERO approach. These refer to the ability (1) to analyze a variety of characteristics of neuroelectric responses reflecting their magnitude, frequency and phase; (2) to separate functionally specific but simultaneous mechanisms of information processing; and (3) to apply a physiological approach assuming a close relationship between the ongoing brain state and the mode of incoming information processing. Also, established methods, analytic tools, and parameters for assessment of EROs are outlined. The major focus of the chapter is on some less well recognized extended applications of the concept of EROs in neurocognitive research. Specifically, applications to (1) internal information processing, (2) event-related frequency tuning, (3) event-related spatial synchronization, and (4) detection of multi-second behavioral patterns are described.

Roumen Kirov (deceased)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADHD:

Attention-deficit/hyperactivity disorder

CSD:

Current source density

CWT:

Continuous wavelet transform

DMN:

Default mode network

EEG:

Electroencephalography

ERO:

Event-related oscillation

ERP:

Event-related potential

ERSS:

Event-related spatial synchronization

FFT:

Fast Fourier transform

Nc:

Correct response negativity

Ne:

Error response negativity

PLF:

Phase-locking factor

PLI:

Phase-lag index

PLV:

Phase-locking value

RRP:

Response-related potential

SW:

Sleep slow wave

TF:

Time frequency

TOTP:

Total power

References

  1. Başar E (1972) A study of the time and frequency characteristics of the potentials evoked in the acoustical cortex. Kybernetik 10:61–64. https://doi.org/10.1007/bf00292231

  2. Başar E (1976) Biophysical and physiological systems analysis. Addison-Wesley Publishing Company Inc., Reading

    Google Scholar 

  3. Başar E (1980) EEG brain dynamics: relation between EEG and brain evoked potentials. Elsevier, Amsterdam

    Google Scholar 

  4. Wiener N (1961) Cybernetics. MIT Press, Wiley, New York

    Google Scholar 

  5. Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, Amsterdam

    Google Scholar 

  6. Luck SJ, Kappenman E (eds) (2012) The Oxford handbook of event-related potential components. Oxford University Press

    Google Scholar 

  7. Luck SJ (2014) An introduction to the event-related potential technique, 2nd edn. MIT Press

    Google Scholar 

  8. Ruchkin D (1988) Measurement of event-related potentials: signal extraction. In: Picton T (ed) Human event-related potentials. Handbook of EEG (revised series), vol 3. Elsevier, Amsterdam, pp 7–43

    Google Scholar 

  9. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R Jr, Miller GA, Ritter W, Ruchkin DS, Rugg MD, Taylor MJ (2000) Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37:127–152. https://doi.org/10.1111/1469-8986.3720127

  10. Polich J (1998) P300 clinical utility and control of variability. J Clin Neurophysiol 15:14–33. https://doi.org/10.1097/00004691-199801000-00004

  11. Başar E, Bullock TH (eds) (1992) Induced rhythms in the brain. Birkhäuser, Boston

    Google Scholar 

  12. Başar E (1998) Brain function and oscillations, vol. 1. Brain oscillations. Principles and approaches. Springer, New York

    Book  Google Scholar 

  13. Başar E (2004) Memory and brain dynamics. Oscillations integrating attention, perception, learning, and memory. CRC Press, Boca Raton

    Book  Google Scholar 

  14. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248. https://doi.org/10.1016/s0167-8760(00)00145-8

    Article  PubMed  Google Scholar 

  15. Cohen MX (2014) Analyzing neural time series data: theory and practice. The MIT Press, Cambridge, MA

    Book  Google Scholar 

  16. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857. https://doi.org/10.1016/s1388-2457(99)00141-8

    Article  CAS  PubMed  Google Scholar 

  17. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195. https://doi.org/10.1016/s0165-0173(98)00056-3

    Article  CAS  PubMed  Google Scholar 

  18. Yordanova J, Kolev V (1996) Developmental changes in the alpha response system. Electroencephalogr Clin Neurophysiol 99:527–538. https://doi.org/10.1016/s0013-4694(96)95562-5

    Article  CAS  PubMed  Google Scholar 

  19. Yordanova J, Kolev V (1998) A single-sweep analysis of the theta frequency band during an auditory oddball task. Psychophysiology 35:116–126. https://doi.org/10.1111/1469-8986.3510116

  20. Yordanova J, Falkenstein M, Hohnsbein J, Kolev V (2004) Parallel systems of error processing in the brain. NeuroImage 22:590–602. https://doi.org/10.1016/j.neuroimage.2004.01.040

    Article  PubMed  Google Scholar 

  21. Kolev V, Demiralp T, Yordanova J, Ademoglu A, Isoglu-Alkaç Ü (1997) Time-frequency analysis reveals multiple functional components during oddball P300. Neuroreport 8:2061–2065. https://doi.org/10.1097/00001756-199705260-00050. ISSN 0959-4965

    Article  CAS  PubMed  Google Scholar 

  22. Yordanova J, Devrim M, Kolev V, Ademoglu A, Demiralp T (2000) Multiple time-frequency components account for the complex functional reactivity of P300. Neuroreport 11:1097–1103. https://doi.org/10.1097/00001756-200004070-00038

    Article  CAS  PubMed  Google Scholar 

  23. Başar E, Yordanova J, Kolev V, Başar-Eroglu C (1997) Is the alpha rhythm a control parameter for brain responses? Biol Cybern 76:471–480. https://doi.org/10.1007/s004220050360

    Article  PubMed  Google Scholar 

  24. Yordanova J, Kolev V (2007) Event-related brain oscillations in normal development. In: Schmidt LA, Segalowitz SJ (eds) Developmental psychophysiology: theory, systems, and methods. Cambridge University Press, New York, pp 15–68. https://doi.org/10.1017/CBO9780511499791

    Chapter  Google Scholar 

  25. Yordanova J, Kolev V, Heinrich H, Woerner W, Banaschewski T, Rothenberger A (2002) Developmental event-related gamma oscillations: effects of auditory attention. Eur J Neurosci 16:2214–2224. https://doi.org/10.1046/j.1460-9568.2002.02286.x

    Article  PubMed  Google Scholar 

  26. Rothenberger A (2009) Brain oscillations forever - neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatry 50:79–86. https://doi.org/10.1111/j.1469-7610.2008.01994.x

    Article  PubMed  Google Scholar 

  27. Kolev V, Başar-Eroglu C, Aksu F, Başar E (1994) EEG rhythmicities evoked by visual stimuli in three-year-old children. Int J Neurosci 75:257–270. https://doi.org/10.3109/00207459408986308

    Article  CAS  PubMed  Google Scholar 

  28. Başar-Eroglu C, Kolev V, Ritter B, Aksu F, Başar E (1994) EEG, auditory evoked potentials and evoked rhythmicities in three-year-old children. Int J Neurosci 75:239–255. https://doi.org/10.3109/00207459408986307

    Article  PubMed  Google Scholar 

  29. Mallat S (1999) A wavelet tour of signal processing, 2nd edn. Academic Press, San Diego

    Google Scholar 

  30. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J (1997) Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. J Neurosci 17:722–734. https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Samar VJ, Swartz KP, Raghuveer MR (1995) Multiresolution analysis of event-related potentials by wavelet decomposition. Brain Cogn 27:398–438. https://doi.org/10.1006/brcg.1995.1028

    Article  CAS  PubMed  Google Scholar 

  32. Demiralp T, Yordanova J, Kolev V, Ademoglu A, Devrim M, Samar VJ (1999) Time-frequency analysis of single-sweep event-related potentials by means of fast wavelet transform. Brain Lang 66:129–145. https://doi.org/10.1006/brln.1998.2028

    Article  CAS  PubMed  Google Scholar 

  33. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schürmann M, Başar E (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105:65–75. https://doi.org/10.1016/s0165-0270(00)00356-3

    Article  CAS  PubMed  Google Scholar 

  34. Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci U S A 106:9866–9871. https://doi.org/10.1073/pnas.0900390106

    Article  PubMed  PubMed Central  Google Scholar 

  35. Uhlhaas PJ, Roux F, Rodriguez E, Rotarska-Jagiela A, Singer W (2010) Neural synchrony and the development of cortical networks. Trends Cogn Sci 14:72–80. https://doi.org/10.1016/j.tics.2009.12.002

    Article  PubMed  Google Scholar 

  36. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113. https://doi.org/10.1038/nrn2774

    Article  CAS  PubMed  Google Scholar 

  37. Kolev V, Yordanova J (1997) Analysis of phase-locking is informative for studying event-related EEG activity. Biol Cybern 76:229–235. https://doi.org/10.1007/s004220050335

    Article  CAS  PubMed  Google Scholar 

  38. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208. https://doi.org/10.1002/(sici)1097-0193(1999)8:4%3C194::aid-hbm4%3E3.0.co;2-c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jervis BW, Nichols MJ, Johnson TE, Allen E, Hudson NR (1983) A fundamental investigation of the composition of auditory evoked potentials. IEEE Trans Biomed Eng BME 30:43–49. https://doi.org/10.1109/tbme.1983.325165

    Article  CAS  Google Scholar 

  40. Cohen MX (2015) Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods 250:137–146. https://doi.org/10.1016/j.jneumeth.2014.09.005

    Article  PubMed  Google Scholar 

  41. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187. https://doi.org/10.1016/0013-4694(89)90180-6

    Article  CAS  PubMed  Google Scholar 

  42. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239. https://doi.org/10.1038/35067550

    Article  CAS  PubMed  Google Scholar 

  43. Stam CJ, Nolte G, Daffertshofer A (2007) Phase-lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28:1178–1193. https://doi.org/10.1002/hbm.20346

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ullsperger M, von Cramon DY (2001) Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage 14:1387–1401. https://doi.org/10.1006/nimg.2001.0935

    Article  CAS  PubMed  Google Scholar 

  45. Cohen MX (2011) Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuro Image 55:1373–1383. https://doi.org/10.1016/j.neuroimage.2010.12.072

    Article  PubMed  Google Scholar 

  46. Kolev V, Falkenstein M, Yordanova J (2005) Aging and error processing: time-frequency analysis of error-related potentials. J Psychophysiol 19:289–297. https://doi.org/10.1027/0269-8803.19.4.289

    Article  Google Scholar 

  47. Kolev V, Beste C, Falkenstein M, Yordanova J (2009) Error-related oscillations: effects of aging on neural systems for behavioral monitoring. J Psychophysiol 23:216–223. https://doi.org/10.1027/0269-8803.23.4.216

    Article  Google Scholar 

  48. Yordanova J, Falkenstein M, Kolev V (2020) Aging-related changes in motor response-related theta activity. Int J Psychophysiol 153:95–106. https://doi.org/10.1016/j.ijpsycho.2020.03.005

    Article  PubMed  Google Scholar 

  49. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L (1990) Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research 1990. Tilburg University Press, Tilburg, pp 192–195

    Google Scholar 

  50. Duprez J, Gulbinaite R, Cohen MX (2020) Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage 207:116340. https://doi.org/10.1016/j.neuroimage.2019.116340

    Article  PubMed  Google Scholar 

  51. Yordanova J, Kirov R, Verleger R, Kolev V (2017) Dynamic coupling between slow waves and sleep spindles during slow wave sleep in humans is modulated by functional pre-sleep activation. Sci Rep 7:14496. https://doi.org/10.1038/s41598-017-15195-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Born J, Rasch B, Gais S (2006) Sleep to remember. Neuroscientist 12:410–424. https://doi.org/10.1177/1073858406292647

    Article  PubMed  Google Scholar 

  53. Mölle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22:10941–10947. https://doi.org/10.1523/jneurosci.22-24-10941.2002

    Article  PubMed  PubMed Central  Google Scholar 

  54. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katzuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of power spectrum. Electroencephalogr Clin Neurophysiol 79:204–210. https://doi.org/10.1016/0013-4694(91)90138-t

    Article  CAS  PubMed  Google Scholar 

  55. Yordanova J, Kolev V, Rosso OA, Schürmann M, Sakowitz OW, Ozgören M, Başar E (2002) Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance. J Neurosci Methods 117:99–109. https://doi.org/10.1016/s0165-0270(02)00095-x

    Article  PubMed  Google Scholar 

  56. Yordanova J, Rosso OA, Kolev V (2003) A transient dominance of theta ERP component characterizes stimulus processing in an auditory oddball task. Clin Neurophysiol 114:529–540. https://doi.org/10.1016/S1388-2457(02)00415-7

    Article  PubMed  Google Scholar 

  57. Kolev V, Rosso OA, Yordanova J (2001) A transient dominance of theta ERP component characterizes passive auditory processing: evidence from a developmental study. Neuroreport 12:2791–2796. https://doi.org/10.1097/00001756-200109170-00008

    Article  CAS  PubMed  Google Scholar 

  58. von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313. https://doi.org/10.1016/s0167-8760(00)00172-0

    Article  Google Scholar 

  59. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 14:277–290. https://doi.org/10.1016/j.tics.2010.04.004

    Article  PubMed  Google Scholar 

  60. Urbano A, Babiloni C, Onorati P, Babiloni F (1998) Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements. Electroencephalogr Clin Neurophysiol 106:477–487. https://doi.org/10.1016/s0013-4694(97)00150-8

    Article  CAS  PubMed  Google Scholar 

  61. Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57:1416–1423. https://doi.org/10.1016/j.biopsych.2004.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sonuga-Barke EJS, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31:977–986. https://doi.org/10.1016/j.neubiorev.2007.02.005

    Article  PubMed  Google Scholar 

  63. Yordanova J, Albrecht B, Uebel H, Kirov R, Banaschewski T, Rothenberger A, Kolev V (2011) Independent oscillatory patterns determine performance fluctuations in children with attention-deficit/hyperactivity disorder. Brain 134:1740–1750. https://doi.org/10.1093/brain/awr107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Research Fund by the Ministry of Education and Science, Sofia, Bulgaria (Project DN13-7/2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kolev, V., Kirov, R., Yordanova, J. (2023). The Concept of Event-Related Oscillations: A Spotlight on Extended Applications. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics