Skip to main content

Utility of Computational Approaches for Precision Psychiatry: Applications to Substance Use Disorders

  • Protocol
  • First Online:
Computational Neuroscience

Part of the book series: Neuromethods ((NM,volume 199))

Abstract

Revolutionary advances in neuroscience and genetics over the past two decades have provided unprecedented opportunities for increasing our understanding of the etiology and pathogenesis of psychiatric disorders. Despite these advances, the translation of this knowledge into clinical practice has been hindered by the significant heterogeneity within disorders and the neurobiologically imprecise categorization of patients. Traditional diagnostic categories do not capture the underlying neurobiological processes and etiological mechanisms of psychiatric disorders and cannot adequately inform prognosis and treatment. To address this gap, the National Institute on Mental Health (NIMH) has proposed an alternative research framework based on Research Domain Criteria (RDoC), which yields psychiatric classification grounded on discoveries from neuroscience and genomics. Recently, the RDoC approach has been adapted for the study of addictions with the Addictions Neuroclinical Assessment (ANA) framework (Kwako et al., Biol Psychiatry 80:179–189, 2016), which proposes that the assessment of addictions should cover multiple systems and focus on three key neurofunctional domains: Executive Function, Incentive Salience, and Negative Emotionality. Building upon the aims of the RDoC framework, a new field of “precision psychiatry” has emerged, considered to be a paradigm shift in psychiatry. Both the RDoC framework and precision psychiatry are predicated on precise measurement, which has necessitated the development of novel analytic approaches for classification and novel dimensional tools for phenotyping that can identify the unique mechanisms of psychiatric disorders at an individual level.

In this chapter, we make the case that theory-driven and data-driven computational approaches have enormous potential for increasing the precision and reliability of measurement, and the accuracy of diagnosis and prognosis in psychiatry. We review three types of computational approaches and their utility for precision psychiatry: (1) Theory-driven approaches, such as computational modeling; (2) Data-driven approaches, using various machine learning methods; and (3) Hybrid approaches, such as joint modeling and adaptive design optimization. We focus more narrowly on the application of these approaches to substance use disorders (SUD), where we attempt to map them on the current RDoC framework for addictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kwako LE, Momenan R, Litten RZ, Koob GF, Goldman D (2016) Addictions Neuroclinical assessment: a neuroscience-based framework for addictive disorders. Biol Psychiatry 80(3):179–189

    Article  PubMed  Google Scholar 

  2. Insel TR (2014) The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397

    Article  PubMed  Google Scholar 

  3. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed  Google Scholar 

  4. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from the brain disease model of addiction. N Engl J Med 374(4):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kwako LE, Schwandt ML, Ramchandani VA, Diazgranados N, Koob GF, Volkow ND et al (2019) Neurofunctional domains derived from deep behavioral phenotyping in alcohol use disorder. Am J Psychiatry: appiajp201818030357

    Google Scholar 

  6. Keyser-Marcus LA, Ramey T, Bjork J, Adams A, Moeller FG (2021) Development and feasibility study of an addiction-focused phenotyping assessment battery. Am J Addict 30(4):398–405

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ramey T, Regier PS (2018) Cognitive impairment in substance use disorders. CNS Spectr 24:1–12

    Google Scholar 

  8. Vassileva J, Conrod PJ (2019) Impulsivities and addictions: a multidimensional integrative framework informing assessment and interventions for substance use disorders. Philos Trans R Soc Lond Ser B Biol Sci 374(1766):20180137

    Article  Google Scholar 

  9. Rezapour T, Rafei P, Baldacchino A, Conrod PJ, Dom G, Fishbein DH et al (2022) Neuroscience-informed classification of prevention interventions in substance use disorders: an RDoC-based approach. MedRxiv: 2022.09.28.22280342

    Google Scholar 

  10. Kessels RPC (2019) Improving precision in neuropsychological assessment: bridging the gap between classic paper-and-pencil tests and paradigms from cognitive neuroscience. Clin Neuropsychol 33(2):357–368

    Article  PubMed  Google Scholar 

  11. Kelly RE, Jr., Hoptman MJ (2022) Replicability in Brain Imaging. Brain Sci 12(3)

    Google Scholar 

  12. Nosek BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ et al (2015) SCIENTIFIC STANDARDS. Promoting an open research culture. Science 348(6242):1422–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pashler H, Wagenmakers EJ (2012) Editors’ introduction to the special section on replicability in psychological science: a crisis of confidence? Perspect Psychol Sci 7(6):528–530

    Article  PubMed  Google Scholar 

  14. Hedge C, Powell G, Sumner P (2018) The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods 50(3):1166–1186

    Article  PubMed  Google Scholar 

  15. Haines N, Kvam PD, Irving LH, Smith C, Beauchaine TP, Pitt MA, Ahn WY, Turner B (2021) Theoretically informed generative models can advance the psychological and brain sciences: lessons from the reliability Paradox. PsyArXiv

    Google Scholar 

  16. Strickland JC, Johnson MW (2021) Rejecting impulsivity as a psychological construct: A theoretical, empirical, and sociocultural argument. Psychol Rev 128(2):336–361

    Article  PubMed  Google Scholar 

  17. Elliott ML, Knodt AR, Ireland D, Morris ML, Poulton R, Ramrakha S et al (2020) What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychol Sci 31(7):792–806

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kennedy JT, Harms MP, Korucuoglu O, Astafiev SV, Barch DM, Thompson WK et al (2022) Reliability and stability challenges in ABCD task fMRI data. NeuroImage 252:119046

    Article  PubMed  Google Scholar 

  19. Whelan R, Garavan H (2014) When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry 75(9):746–748

    Article  PubMed  Google Scholar 

  20. Han X, Ashar YK, Kragel P, Petre B, Schelkun V, Atlas LY et al (2022) Effect sizes and test-retest reliability of the fMRI-based neurologic pain signature. NeuroImage 247:118844

    Article  PubMed  Google Scholar 

  21. Kragel PA, Han X, Kraynak TE, Gianaros PJ, Wager TD (2021) Functional MRI can be highly reliable, but it depends on what you measure: a commentary on Elliott et al. (2020). Psychol Sci 32(4):622–626

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M (2017) The new field of ‘precision psychiatry’. BMC Med 15(1):80

    Article  PubMed  PubMed Central  Google Scholar 

  23. Williams LM (2016) Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry 3(5):472–480

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bickel WK, Jarmolowicz DP, Mueller ET, Koffarnus MN, Gatchalian KM (2012) Excessive discounting of delayed reinforcers as a trans-disease process contributing to addiction and other disease-related vulnerabilities: emerging evidence. Pharmacol Ther 134(3):287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwako LE, Bickel WK, Goldman D (2018) Addiction biomarkers: dimensional approaches to understanding addiction. Trends Mol Med 24(2):121–128

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bickel WK, Johnson MW, Koffarnus MN, MacKillop J, Murphy JG (2014) The behavioral economics of substance use disorders: reinforcement pathologies and their repair. Annu Rev Clin Psychol 10:641–677

    Article  PubMed  PubMed Central  Google Scholar 

  27. Turing AMhdops (1937) On computable numbers, with an application to the Entscheidungsproblem Proc Lond Math Soc s2-42:230–65

    Google Scholar 

  28. Huys QJM, Maia TV, Frank MJ (2016) Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19(3):404–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huys QJM, Browning M, Paulus MP, Frank MJ (2021) Advances in the computational understanding of mental illness. Neuropsychopharmacology 46(1):3–19

    Article  PubMed  Google Scholar 

  30. Paulus MP, Huys QJ, Maia TV (2016) A roadmap for the development of applied computational psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging 1(5):386–392

    PubMed  PubMed Central  Google Scholar 

  31. Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn Sci 16(1):72–80

    Article  PubMed  Google Scholar 

  32. Friston KJ, Stephan KE, Montague R, Dolan RJ (2014) Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry 1(2):148–158

    Article  PubMed  Google Scholar 

  33. Bechara A, Dolan S, Denburg N, Hindes A, Anderson SW, Nathan PE (2001) Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39(4):376–389

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Yang P, Chen T, Su H, Jiang H, Zhao M (2020) Risky decision-making in individuals with substance use disorder: a meta-analysis and meta-regression review. Psychopharmacology 237(7):1893–1908

    Article  CAS  PubMed  Google Scholar 

  35. Amlung M, Vedelago L, Acker J, Balodis I, MacKillop J (2017) Steep delay discounting and addictive behavior: a meta-analysis of continuous associations. Addiction 112(1):51–62

    Article  PubMed  Google Scholar 

  36. Petry NM (2001) Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology 154(3):243–250

    Article  CAS  PubMed  Google Scholar 

  37. Bickel WK, Odum AL, Madden GJ (1999) Impulsivity and cigarette smoking: delay discounting in current, never, and ex-smokers. Psychopharmacology 146(4):447–454

    Article  CAS  PubMed  Google Scholar 

  38. Kirby KN, Petry NM (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99(4):461–471

    Article  PubMed  Google Scholar 

  39. Kirby KN, Petry NM, Bickel WK (1999) Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J Exp Psychol Gen 128(1):78–87

    Article  CAS  PubMed  Google Scholar 

  40. Petry NM, Bickel WK, Arnett M (1998) Shortened time horizons and insensitivity to future consequences in heroin addicts. Addiction 93(5):729–738

    Article  CAS  PubMed  Google Scholar 

  41. Cox DJ, Dolan SB, Johnson P, Johnson MW (2020) Delay and probability discounting in cocaine use disorder: comprehensive examination of money, cocaine, and health outcomes using gains and losses at multiple magnitudes. Exp Clin Psychopharmacol 28(6):724–738

    Article  CAS  PubMed  Google Scholar 

  42. Anokhin AP, Grant JD, Mulligan RC, Heath AC (2015) The genetics of impulsivity: evidence for the heritability of delay discounting. Biol Psychiatry 77(10):887–894

    Article  PubMed  Google Scholar 

  43. Lempert KM, Steinglass JE, Pinto A, Kable JW, Simpson HB (2019) Can delay discounting deliver on the promise of RDoC? Psychol Med 49(2):190–199

    Article  PubMed  Google Scholar 

  44. Ahn WY, Dai J, Vassileva J, Busemeyer JR, Stout JC (2016) Computational modeling for addiction medicine: from cognitive models to clinical applications. Prog Brain Res 224:53–65

    Article  PubMed  Google Scholar 

  45. Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15

    Article  CAS  PubMed  Google Scholar 

  46. Busemeyer JR, Stout JC (2002) A contribution of cognitive decision models to clinical assessment: decomposing performance on the Bechara gambling task. Psychol Assess 14(3):253–262

    Article  PubMed  Google Scholar 

  47. Ahn WY, Busemeyer JR, Wagenmakers EJ, Stout JC (2008) Comparison of decision learning models using the generalization criterion method. Cogn Sci 32(8):1376–1402

    Article  PubMed  Google Scholar 

  48. Worthy DA, Pang B, Byrne KA (2013) Decomposing the roles of perseveration and expected value representation in models of the Iowa gambling task. Front Psychol 4:640

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haines N, Vassileva J, Ahn WY (2018) The outcome-representation learning model: a novel reinforcement learning model of the Iowa gambling task. Cogn Sci 42(8):2534–2561

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahn WY, Vasilev G, Lee SH, Busemeyer JR, Kruschke JK, Bechara A et al (2014) Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Front Psychol 5:849

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bechara A, Martin EM (2004) Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology 18(1):152–162

    Article  PubMed  Google Scholar 

  52. Gonzalez R, Bechara A, Martin EM (2007) Executive functions among individuals with methamphetamine or alcohol as drugs of choice: preliminary observations. J Clin Exp Neuropsychol 29(2):155–159

    Article  PubMed  Google Scholar 

  53. Gonzalez R, Schuster RM, Mermelstein RJ, Vassileva J, Martin EM, Diviak KR (2012) Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. J Clin Exp Neuropsychol 34(9):962–976

    Article  PubMed  PubMed Central  Google Scholar 

  54. Grant S, Contoreggi C, London ED (2000) Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia 38(8):1180–1187

    Article  CAS  PubMed  Google Scholar 

  55. Martin EM, DeHaan S, Vassileva J, Gonzalez R, Weller J, Bechara A (2013) Decision making among HIV+ drug using men who have sex with men: a preliminary report from the Chicago Multicenter AIDS Cohort Study. J Clin Exp Neuropsychol 35(6):573–583

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vassileva J, Gonzalez R, Bechara A, Martin EM (2007) Are all drug addicts impulsive? Effects of antisociality and extent of multidrug use on cognitive and motor impulsivity. Addict Behav 32(12):3071–3076

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vassileva J, Petkova P, Georgiev S, Martin EM, Tersiyski R, Raycheva M et al (2007) Impaired decision-making in psychopathic heroin addicts. Drug Alcohol Depend 86(2–3):287–289

    Article  PubMed  Google Scholar 

  58. Verdejo-Garcia AJ, Perales JC, Perez-Garcia M (2007) Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict Behav 32(5):950–966

    Article  PubMed  Google Scholar 

  59. Mellentin AI, Skot L, Teasdale TW, Habekost T (2013) Conscious knowledge influences decision-making differently in substance abusers with and without co-morbid antisocial personality disorder. Scand J Psychol 54(4):292–299

    Article  PubMed  Google Scholar 

  60. Psederska E, Thomson ND, Bozgunov K, Nedelchev D, Vasilev G, Vassileva J (2021) Effects of psychopathy on neurocognitive domains of impulsivity in abstinent opiate and stimulant users. Front Psych 12:660810

    Article  Google Scholar 

  61. Segala L, Vasilev G, Raynov I, Gonzalez R, Vassileva J (2015) Childhood symptoms of ADHD and impulsivity in abstinent heroin users. J Dual Diagn 11(3–4):174–178

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yechiam E, Busemeyer JR, Stout JC, Bechara A (2005) Using cognitive models to map relations between neuropsychological disorders and human decision-making deficits. Psychol Sci 16(12):973–978

    Article  PubMed  Google Scholar 

  63. Konova AB, Lopez-Guzman S, Urmanche A, Ross S, Louie K, Rotrosen J et al (2020) Computational markers of risky decision-making for identification of temporal windows of vulnerability to opioid use in a real-world clinical setting. JAMA Psychiatry 77(4):368–377

    Article  PubMed  Google Scholar 

  64. Kvam PD, Romeu RJ, Turner BM, Vassileva J, Busemeyer JR (2020) Testing the factor structure underlying behavior using joint cognitive models: impulsivity in delay discounting and Cambridge gambling tasks. Psychol Methods

    Google Scholar 

  65. Park H, Yang J, Vassileva J, Ahn WY (2021) Development of a novel computational model for the balloon analogue risk task: the exponential-weight mean-variance model. J Math Psychol 102:102532

    Article  PubMed  PubMed Central  Google Scholar 

  66. Romeu RJ, Haines N, Ahn WY, Busemeyer JR, Vassileva J (2020) A computational model of the Cambridge gambling task with applications to substance use disorders. Drug Alcohol Depend 206:107711

    Article  PubMed  Google Scholar 

  67. Vassileva J, Ahn WY, Weber KM, Busemeyer JR, Stout JC, Gonzalez R et al (2013) Computational modeling reveals distinct effects of HIV and history of drug use on decision-making processes in women. PLoS One 8(8):e68962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K et al (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20(4):322–339

    Article  CAS  PubMed  Google Scholar 

  69. Fishbein D, Hyde C, Eldreth D, London ED, Matochik J, Ernst M et al (2005) Cognitive performance and autonomic reactivity in abstinent drug abusers and nonusers. Exp Clin Psychopharmacol 13(1):25–40

    Article  PubMed  Google Scholar 

  70. Tolomeo S, Davey F, Steele JD, Baldacchino A (2021) Compulsivity and impulsivity in opioid dependence. Drug Alcohol Depend 229(Pt A):109018

    Google Scholar 

  71. Wilson MJ, Vassileva J (2018) Decision-making under risk, but not under ambiguity, predicts pathological Gambling in discrete types of abstinent substance users. Front Psychiatry 9:239

    Article  PubMed  PubMed Central  Google Scholar 

  72. Todesco S, Chao T, Schmid L, Thiessen KA, Schutz CG (2021) Changes in loss sensitivity during treatment in concurrent disorders inpatients: a computational model approach to assessing risky decision-making. Front Psych 12:794014

    Article  Google Scholar 

  73. Lejuez CW, Read JP, Kahler CW, Richards JB, Ramsey SE, Stuart GL et al (2002) Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). J Exp Psychol Appl 8(2):75–84

    Article  CAS  PubMed  Google Scholar 

  74. Yip SWB DM, Chase HW, Flagel S, Huys QJM, Konova AB, Montague R, Paulus M (2022) From computation to clinic. Biol Psychiatry Global Open Sci

    Google Scholar 

  75. Athamneh LN, Brown J, Stein JS, Gatchalian KM, LaConte SM, Bickel WK (2022) Future thinking to decrease real-world drinking in alcohol use disorder: repairing reinforcer pathology in a randomized proof-of-concept trial. Exp Clin Psychopharmacol 30(3):326–337

    Article  PubMed  Google Scholar 

  76. Ruhi-Williams P, King MJ, Stein JS, Bickel WK (2022) Episodic future thinking about smoking-related illness: a preliminary investigation of effects on delay discounting, cigarette craving, and cigarette demand. Int J Environ Res Public Health 19(12)

    Google Scholar 

  77. Stein JS, Wilson AG, Koffarnus MN, Daniel TO, Epstein LH, Bickel WK (2016) Unstuck in time: episodic future thinking reduces delay discounting and cigarette smoking. Psychopharmacology 233(21–22):3771–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gueguen MCM, Schweitzer EM, Konova AB (2021) Computational theory-driven studies of reinforcement learning and decision-making in addiction: what have we learned? Curr Opin Behav Sci 38:40–48

    Article  PubMed  Google Scholar 

  79. Turner BM, Rodriguez CA, Norcia TM, McClure SM, Steyvers M (2016) Why more is better: simultaneous modeling of EEG, fMRI, and behavioral data. NeuroImage 128:96–115

    Article  PubMed  Google Scholar 

  80. Hamilton KR, Mitchell MR, Wing VC, Balodis IM, Bickel WK, Fillmore M et al (2015) Choice impulsivity: definitions, measurement issues, and clinical implications. Personal Disord 6(2):182–198

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hamilton KR, Littlefield AK, Anastasio NC, Cunningham KA, Fink LH, Wing VC et al (2015) Rapid-response impulsivity: definitions, measurement issues, and clinical implications. Personal Disord 6(2):168–181

    Article  PubMed  PubMed Central  Google Scholar 

  82. Palmeri TJ, Love BC, Turner BM (2017) Model-based cognitive neuroscience. J Math Psychol 76(Pt B):59–64

    Google Scholar 

  83. Turner BM, Forstmann BU, Wagenmakers EJ, Brown SD, Sederberg PB, Steyvers M (2013) A Bayesian framework for simultaneously modeling neural and behavioral data. NeuroImage 72:193–206

    Article  PubMed  Google Scholar 

  84. Turner BM, Wang T, Merkle EC (2017) Factor analysis linking functions for simultaneously modeling neural and behavioral data. NeuroImage 153:28–48

    Article  PubMed  Google Scholar 

  85. O’Doherty JP, Hampton A, Kim H (2007) Model-based fMRI and its application to reward learning and decision making. Ann N Y Acad Sci 1104:35–53

    Article  PubMed  Google Scholar 

  86. Yu JC, Fiore VG, Briggs RW, Braud J, Rubia K, Adinoff B et al (2020) An insula-driven network computes decision uncertainty and promotes abstinence in chronic cocaine users. Eur J Neurosci 52(12):4923–4936

    Article  PubMed  PubMed Central  Google Scholar 

  87. Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based influences on humans’ choices and striatal prediction errors. Neuron 69(6):1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guitart-Masip M, Huys QJ, Fuentemilla L, Dayan P, Duzel E, Dolan RJ (2012) Go and no-go learning in reward and punishment: interactions between affect and effect. NeuroImage 62(1):154–166

    Article  PubMed  Google Scholar 

  89. Moutoussis M, Shahar N, Hauser TU, Dolan RJ (2018) Computation in psychotherapy, or how computational psychiatry can aid learning-based psychological therapies. Comput Psychiatr 2:50–73

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nair A, Rutledge RB, Mason L (2020) Under the Hood: using computational psychiatry to make psychological therapies more mechanism-focused. Front Psych 11:140

    Article  Google Scholar 

  91. Paulus MP, Thompson WK (2021) Computational approaches and machine learning for individual-level treatment predictions. Psychopharmacology 238(5):1231–1239

    Article  CAS  PubMed  Google Scholar 

  92. Lesmes LA, Lu ZL, Baek J, Albright TD (2010) Bayesian adaptive estimation of the contrast sensitivity function: the quick CSF method. J Vis 10(3):17 1–21

    Google Scholar 

  93. Myung JI, Cavagnaro DR, Pitt MA (2013) A tutorial on adaptive design optimization. J Math Psychol 57(3–4):53–67

    Article  PubMed  PubMed Central  Google Scholar 

  94. Aranovich GJ, Cavagnaro DR, Pitt MA, Myung JI, Mathews CA (2017) A model-based analysis of decision making under risk in obsessive-compulsive and hoarding disorders. J Psychiatr Res 90:126–132

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gu H, Kim W, Hou F, Lesmes LA, Pitt MA, Lu ZL et al (2016) A hierarchical Bayesian approach to adaptive vision testing: a case study with the contrast sensitivity function. J Vis 16(6):15

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hou F, Lesmes LA, Kim W, Gu H, Pitt MA, Myung JI et al (2016) Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes. J Vis 16(6):18

    Article  PubMed  PubMed Central  Google Scholar 

  97. Cavagnaro DR, Gonzalez R, Myung JI, Pitt MA (2013) Optimal decision stimuli for risky choice experiments: an adaptive approach. Manag Sci 59(2):358–375

    Article  Google Scholar 

  98. Cavagnaro DR, Aranovich GJ, McClure SM, Pitt MA, Myung JI (2016) On the functional form of temporal discounting: an optimized adaptive test. J Risk Uncertain 52(3):233–254

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ahn WY, Gu H, Shen Y, Haines N, Hahn HA, Teater JE et al (2020) Rapid, precise, and reliable measurement of delay discounting using a Bayesian learning algorithm. Sci Rep 10(1):12091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kwon M, Lee SH, Ahn WY (2022) Adaptive design optimization as a promising tool for reliable and efficient computational fingerprinting. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging

    Google Scholar 

  101. Wiecki TV, Poland J, Frank MJ (2015) Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci 3(3):378–399

    Article  Google Scholar 

  102. Afzali MH, Sunderland M, Stewart S, Masse B, Seguin J, Newton N et al (2019) Machine-learning prediction of adolescent alcohol use: a cross-study, cross-cultural validation. Addiction 114(4):662–671

    Article  PubMed  Google Scholar 

  103. Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T et al (2014) Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512(7513):185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Choi J, Jung HT, Ferrell A, Woo S, Haddad L (2021) Machine learning-based nicotine addiction prediction models for youth E-Cigarette and Waterpipe (Hookah) users. J Clin Med 10(5)

    Google Scholar 

  105. Ding X, Yang Y, Stein EA, Ross TJ (2017) Combining multiple resting-state fMRI features during classification: optimized frameworks and their application to nicotine addiction. Front Hum Neurosci 11:362

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pariyadath V, Stein EA, Ross TJ (2014) Machine learning classification of resting state functional connectivity predicts smoking status. Front Hum Neurosci 8:425

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ahn WY, Ramesh D, Moeller FG, Vassileva J (2016) Utility of machine-learning approaches to identify behavioral markers for substance use disorders: impulsivity dimensions as predictors of current cocaine dependence. Front Psych 7:34

    Google Scholar 

  108. Jimenez S, Angeles-Valdez D, Villicana V, Reyes-Zamorano E, Alcala-Lozano R, Gonzalez-Olvera JJ et al (2019) Identifying cognitive deficits in cocaine dependence using standard tests and machine learning. Prog Neuro-Psychopharmacol Biol Psychiatry 95:109709

    Article  Google Scholar 

  109. Niklason GR, Rawls E, Ma S, Kummerfeld E, Maxwell AM, Brucar LR et al (2022) Explainable machine learning analysis reveals sex and gender differences in the phenotypic and neurobiological markers of Cannabis Use Disorder. Sci Rep 12(1):15624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rajapaksha R, Hammonds R, Filbey F, Choudhary PK, Biswas S (2020) A preliminary risk prediction model for cannabis use disorder. Prev Med Rep 20:101228

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schwebel FJ, Richards DK, Pfund RA, Joseph VW, Pearson MR, Marijuana Outcomes Study T (2022) Using decision trees to identify salient predictors of Cannabis-related outcomes. J Psychoactive Drugs: 1–10

    Google Scholar 

  112. Ahn WY, Vassileva J (2016) Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence. Drug Alcohol Depend 161:247–257

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bickel WK, Moody LN, Eddy CR, Franck CT (2017) Neurocognitive dysfunction in addiction: testing hypotheses of diffuse versus selective phenotypic dysfunction with a classification-based approach. Exp Clin Psychopharmacol 25(4):322–332

    Article  PubMed  PubMed Central  Google Scholar 

  114. Boer OD, El Marroun H, Franken IHA (1795) Brain morphology predictors of alcohol, tobacco, and cannabis use in adolescence: a systematic review. Brain Res 2022:148020

    Google Scholar 

  115. Lichenstein SD, Scheinost D, Potenza MN, Carroll KM, Yip SW (2021) Dissociable neural substrates of opioid and cocaine use identified via connectome-based modelling. Mol Psychiatry 26(8):4383–4393

    Article  PubMed  Google Scholar 

  116. Ruberu TLM, Kenyon EA, Hudson KA, Filbey F, Ewing SWF, Biswas S et al (2022) Joint risk prediction for hazardous use of alcohol, cannabis, and tobacco among adolescents: a preliminary study using statistical and machine learning. Prev Med Rep 25:101674

    Article  PubMed  Google Scholar 

  117. Coughlin LN, Tegge AN, Sheffer CE, Bickel WK (2020) A machine-learning approach to predicting smoking cessation treatment outcomes. Nicotine Tob Res 22(3):415–422

    Article  CAS  PubMed  Google Scholar 

  118. Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C et al (2010) The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15(12):1128–1139

    Article  CAS  PubMed  Google Scholar 

  119. Elam JS, Glasser MF, Harms MP, Sotiropoulos SN, Andersson JLR, Burgess GC et al (2021) The Human Connectome Project: a retrospective. NeuroImage 244:118543

    Article  CAS  PubMed  Google Scholar 

  120. Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1(4):e42

    Article  PubMed  PubMed Central  Google Scholar 

  121. Thompson PM, Stein JL, Medland SE, Hibar DP, Vasquez AA, Renteria ME et al (2014) The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav 8(2):153–182

    Article  PubMed  PubMed Central  Google Scholar 

  122. Barch DM, Albaugh MD, Avenevoli S, Chang L, Clark DB, Glantz MD et al (2018) Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: rationale and description. Dev Cogn Neurosci 32:55–66

    Article  PubMed  Google Scholar 

  123. Luciana M, Bjork JM, Nagel BJ, Barch DM, Gonzalez R, Nixon SJ et al (2018) Adolescent neurocognitive development and impacts of substance use: overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev Cogn Neurosci 32:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Morris AS, Squeglia LM, Jacobus J, Silk JS (2018) Adolescent brain development: implications for understanding risk and resilience processes through neuroimaging research. J Res Adolesc 28(1):4–9

    Article  PubMed  PubMed Central  Google Scholar 

  125. Volkow ND, Koob GF, Croyle RT, Bianchi DW, Gordon JA, Koroshetz WJ et al (2018) The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci 32:4–7

    Article  PubMed  Google Scholar 

  126. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J et al (2015) UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12(3):e1001779

    Article  PubMed  PubMed Central  Google Scholar 

  127. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD et al (2016) Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry 173(4):373–384

    Article  PubMed  Google Scholar 

  129. Williams LM (2017) Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety 34(1):9–24

    Article  PubMed  Google Scholar 

  130. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38

    Article  CAS  PubMed  Google Scholar 

  131. Clementz BA, Parker DA, Trotti RL, McDowell JE, Keedy SK, Keshavan MS et al (2022) Psychosis biotypes: replication and validation from the B-SNIP consortium. Schizophr Bull 48(1):56–68

    Article  PubMed  Google Scholar 

  132. Ivleva EI, Clementz BA, Dutcher AM, Arnold SJM, Jeon-Slaughter H, Aslan S et al (2017) Brain structure biomarkers in the psychosis biotypes: findings from the bipolar-schizophrenia network for intermediate phenotypes. Biol Psychiatry 82(1):26–39

    Article  PubMed  Google Scholar 

  133. Tamminga CA, Pearlson G, Gershon E, Keedy S, Hudgens-Haney ME, Ivleva EI et al (2022) Using psychosis biotypes and the Framingham model for parsing psychosis biology. Schizophr Res 242:132–134

    Article  PubMed  Google Scholar 

  134. Zhu T, Becquey C, Chen Y, Lejuez CW, Li CR, Bi J (2022) Identifying alcohol misuse biotypes from neural connectivity markers and concurrent genetic associations. Transl Psychiatry 12(1):253

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zarate D, Ball M, Montag C, Prokofieva M, Stavropoulos V (2022) Unravelling the web of addictions: A network analysis approach. Addict Behav Rep 15:100406

    PubMed  PubMed Central  Google Scholar 

  136. Ahn WY, Haines N, Zhang L (2017) Revealing neurocomputational mechanisms of reinforcement learning and decision-making with the hBayesDM package. Comput Psychiatr 1:24–57

    Article  PubMed  PubMed Central  Google Scholar 

  137. Ahn WY, Hendricks P, Haines N (2017) Easyml: easily build and evaluate machine learning models bioRxiv: 137240

    Google Scholar 

  138. Yang J, Pitt MA, Ahn WY, Myung JI (2021) ADOpy: a python package for adaptive design optimization. Behav Res Methods 53(2):874–897

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Vassileva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vassileva, J., Lee, JH., Psederska, E., Ahn, WY. (2023). Utility of Computational Approaches for Precision Psychiatry: Applications to Substance Use Disorders. In: Stoyanov, D., Draganski, B., Brambilla, P., Lamm, C. (eds) Computational Neuroscience. Neuromethods, vol 199. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3230-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3230-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3229-1

  • Online ISBN: 978-1-0716-3230-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics