Skip to main content

Metabolic Labeling of Mitochondrial Translation Products in Whole Cells and Isolated Organelles

  • Protocol
  • First Online:
The Mitoribosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2661))

Abstract

Mitochondria retain their own genome and translational apparatus that is highly specialized in the synthesis of a handful of proteins, essential components of the oxidative phosphorylation system. During evolution, the players and mechanisms involved in mitochondrial translation have acquired some unique features, which we have only partially disclosed. The study of the mitochondrial translation process has been historically hampered by the lack of an in vitro translational system and has largely relied on the analysis of the incorporation rate of radiolabeled amino acids into mitochondrial proteins in cellulo or in organello. In this chapter, we describe methods to monitor mitochondrial translation by labeling newly synthesized mitochondrial polypeptides with [S35]-methionine in either yeast or mammalian whole cells or isolated mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Herrmann JM, Woellhaf MW, Bonnefoy N (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators. Biochim Biophys Acta (BBA) Mol Cell Res 1833(2):286–294

    Article  CAS  Google Scholar 

  2. Fontanesi F (2013) Mechanisms of mitochondrial translational regulation. IUBMB Life 65(5):397–408

    Article  CAS  PubMed  Google Scholar 

  3. Singh V, Itoh Y, Huynen MA et al (2022) Activation mechanism of mitochondrial translation by LRPPRC-SLIRP. bioRxiv. 2022:2022.06.20.496763

    Google Scholar 

  4. Kummer E, Ban N (2021) Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 22(5):307–325

    Article  CAS  PubMed  Google Scholar 

  5. Wallis JW, Chrebet G, Brodsky G et al (1989) A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58(2):409–419

    Article  CAS  PubMed  Google Scholar 

  6. Herrmann JM, Stuart RA, Craig EA et al (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J Cell Biol 127(4):893–902

    Article  CAS  PubMed  Google Scholar 

  7. Enriquez JA, Attardi G (1996) Analysis of aminoacylation of human mitochondrial tRNAs. Methods Enzymol 264:183–196

    Article  CAS  PubMed  Google Scholar 

  8. Maiti P, Antonicka H, Gingras A-C et al (2020) Human GTPBP5 (MTG2) fuels mitoribosome large subunit maturation by facilitating 16S rRNA methylation. Nucleic Acids Res 48(14):7924–7943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernandez-Vizarra E, Ferrin G, Perez-Martos A et al (2010) Isolation of mitochondria for biogenetical studies: an update. Mitochondrion 10(3):253–262

    Article  CAS  PubMed  Google Scholar 

  10. Côté C, Poirier J, Boulet D (1989) Expression of the mammalian mitochondrial genome. Stability of mitochondrial translation products as a function of membrane potential. J Biol Chem 264(15):8487–8490

    Article  PubMed  Google Scholar 

  11. Edgar D, Shabalina I, Camara Y et al (2009) Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metab 10(2):131–138

    Article  CAS  PubMed  Google Scholar 

  12. Leary SC, Sasarman F (2009) Oxidative phosphorylation: synthesis of mitochondrially encoded proteins and assembly of individual structural subunits into functional holoenzyme complexes. Methods Mol Biol 554:143–162

    Article  CAS  PubMed  Google Scholar 

  13. Hobbie SN, Akshay S, Kalapala SK et al (2008) Genetic analysis of interactions with eukaryotic rRNA identify the mitoribosome as target in aminoglycoside ototoxicity. Proc Natl Acad Sci U S A 105(52):20888–20893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mays JN, Camacho-Villasana Y, Garcia-Villegas R et al (2019) The mitoribosome-specific protein mS38 is preferentially required for synthesis of cytochrome c oxidase subunits. Nucleic Acids Res 47(11):5746–5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seshadri SR, Banarjee C, Barros MH et al (2020) The translational activator Sov1 coordinates mitochondrial gene expression with mitoribosome biogenesis. Nucleic Acids Res 48(12):6759–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrientos A, Zambrano A, Tzagoloff A (2004) Mss51p and Cox14p jointly regulate mitochondrial Cox1p expression in Saccharomyces cerevisiae. EMBO J 23(17):3472–3482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poutre CG, Fox TD (1987) PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115(4):637–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. EMBO J 14(16):4031–4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maiti P, Kim H-J, Tu Y-T et al (2018) Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res 46(21):11423–11437

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Our work is supported by the US Army Research Office (grant W911NF-21-1-0359 to FF) and the Florida Department of Health (grant 22B12 to FF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Fontanesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maiti, P., Fontanesi, F. (2023). Metabolic Labeling of Mitochondrial Translation Products in Whole Cells and Isolated Organelles. In: Barrientos, A., Fontanesi, F. (eds) The Mitoribosome. Methods in Molecular Biology, vol 2661. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3171-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3171-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3170-6

  • Online ISBN: 978-1-0716-3171-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics