Skip to main content

Systematic Analysis of Assembly Intermediates in Yeast to Decipher the Mitoribosome Assembly Pathway

  • Protocol
  • First Online:
The Mitoribosome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2661))

Abstract

Studies of yeast mitoribosome assembly have been historically hampered by the difficulty of generating mitoribosome protein-coding gene deletion strains with a stable mitochondrial genome. The identification of mitochondrial DNA-stabilizing approaches allows for the generation of a complete set of yeast deletion strains covering all mitoribosome proteins and known assembly factors. These strains can be used to analyze the integrity and assembly state of mitoribosomes by determining the sedimentation profile of these structures by sucrose gradient centrifugation of mitochondrial extracts, coupled to mass spectrometry analysis of mitoribosome composition. Subsequent hierarchical cluster analysis of mitoribosome subassemblies accumulated in mutant strains reveals details regarding the order of protein association during the mitoribosome biogenetic process. These strains also allow the expression of truncated protein variants to probe the role of mitochondrion-specific protein extensions, the relevance of protein cofactors, or the importance of RNA-protein interactions in functional sites of the mitoribosome. In this chapter, we will detail the methodology involved in these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferrari A, Del’Olio S, Barrientos A (2021) The diseased mitoribosome. FEBS Lett 595(8):1025–1061. https://doi.org/10.1002/1873-3468.14024

    Article  CAS  PubMed  Google Scholar 

  2. Petrov AS, Wood EC, Bernier CR et al (2019) Structural patching fosters divergence of mitochondrial ribosomes. Mol Biol Evol 36(2):207–219

    Article  CAS  PubMed  Google Scholar 

  3. Jourdain AA, Koppen M, Wydro M et al (2013) GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab 17(3):399–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antonicka H, Choquet K, Lin ZY et al (2017) A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability. EMBO Rep 18(1):28–38

    Article  CAS  PubMed  Google Scholar 

  5. Tu YT, Barrientos A (2015) The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10(6):854–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maiti P, Kim HJ, Tu YT et al (2018) Human GTPBP10 is required for mitoribosome maturation. Nucleic Acids Res 13. https://doi.org/10.1093/nar/gky938

  7. Antonicka H, Sasarman F, Nishimura T et al (2013) The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. Cell Metab 17(3):386–398

    Article  CAS  PubMed  Google Scholar 

  8. Gopisetty G, Thangarajan R (2016) Mammalian mitochondrial ribosomal small subunit (MRPS) genes: a putative role in human disease. Gene 589(1):27–35

    Article  CAS  PubMed  Google Scholar 

  9. Dalla Rosa I, Durigon R, Pearce SF et al (2014) MPV17L2 is required for ribosome assembly in mitochondria. Nucleic Acids Res 42(13):8500–8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reyes A, Favia P, Vidoni S et al (2020) RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases. PLoS Genet 16(7):e1008923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shajani Z, Sykes MT, Williamson JR (2011) Assembly of bacterial ribosomes. Annu Rev Biochem 80:501–526

    Article  CAS  PubMed  Google Scholar 

  12. Barrientos A, Korr D, Barwell KJ et al (2003) MTG1 codes for a conserved protein required for mitochondrial translation. Mol Biol Cell 14(6):2292–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Paul MF, Alushin GM, Barros MH et al (2012) The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes. J Biol Chem 287(29):24346–24355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rackham O, Busch JD, Matic S et al (2016) Hierarchical RNA processing is required for mitochondrial ribosome assembly. Cell Rep 16(7):1874–1890

    Article  CAS  PubMed  Google Scholar 

  15. Dennerlein S, Rozanska A, Wydro M et al (2010) Human ERAL1 is a mitochondrial RNA chaperone involved in the assembly of the 28S small mitochondrial ribosomal subunit. Biochem J 430(3):551–558

    Article  CAS  PubMed  Google Scholar 

  16. Metodiev MD, Spahr H, Loguercio Polosa P et al (2014) NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet 10(2):e1004110

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown A, Rathore S, Kimanius D et al (2017) Structures of the human mitochondrial ribosome in native states of assembly. Nat Struct Mol Biol 24(10):866–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cipullo M, Gesé GV, Khawaja A et al (2021) Structural basis for late maturation steps of the human mitoribosomal large subunit. Nat Commun 12(1):3673. https://doi.org/10.1038/s41467-021-23617-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hillen HS, Lavdovskaia E, Nadler F et al (2021) Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat Commun 12(1):3672. https://doi.org/10.1038/s41467-021-23702-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lenarčič T, Jaskolowski M, Leibundgut M et al (2021) Stepwise maturation of the peptidyl transferase region of human mitoribosomes. Nat Commun 12(1):3671. https://doi.org/10.1038/s41467-021-23811-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Itoh Y, Khawaja A, Laptev I et al (2022) Mechanism of mitoribosomal small subunit biogenesis and preinitiation. Nature 606:603. https://doi.org/10.1038/s41586-022-04795-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng J, Berninghausen O, Beckmann R (2021) A distinct assembly pathway of the human 39S late pre-mitoribosome. Nat Commun 12(1):4544. https://doi.org/10.1038/s41467-021-24818-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandrasekaran V, Desai N, Burton NO et al (2021) Visualizing formation of the active site in the mitochondrial ribosome. elife 10. https://doi.org/10.7554/eLife.68806

  24. Saurer M, Ramrath DJF, Niemann M et al (2019) Mitoribosomal small subunit biogenesis in trypanosomes involves an extensive assembly machinery. Science 365(6458):1144–1149

    Article  CAS  PubMed  Google Scholar 

  25. Lenarčič T, Niemann M, Ramrath DJF et al (2022) Mitoribosomal small subunit maturation involves formation of initiation-like complexes. Proc Natl Acad Sci U S A 119(3). https://doi.org/10.1073/pnas.2114710118

  26. Jaskolowski M, Ramrath DJF, Bieri P et al (2020) Structural insights into the mechanism of mitoribosomal large subunit biogenesis. Mol Cell 79(4):629–644

    Article  CAS  PubMed  Google Scholar 

  27. Tobiasson V, Gahura O, Aibara S et al (2021) Interconnected assembly factors regulate the biogenesis of mitoribosomal large subunit. EMBO J 40(6):e106292. https://doi.org/10.15252/embj.2020106292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bogenhagen DF, Ostermeyer-Fay AG, Haley JD et al (2018) Kinetics and mechanism of mammalian mitochondrial ribosome assembly. Cell Rep 22(7):1935–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zeng R, Smith E, Barrientos A (2018) Yeast mitoribosome large subunit assembly proceeds by hierarchical incorporation of protein clusters and modules on the inner membrane. Cell Metab 27(3):645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Desai N, Brown A, Amunts A et al (2017) The structure of the yeast mitochondrial ribosome. Science 355(6324):528–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amunts A, Brown A, Bai X et al (2014) Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Silva D, Fontanesi F, Barrientos A (2013) The DEAD-Box protein Mrh4 functions in the assembly of the mitochondrial large ribosomal subunit. Cell Metab 18:712–725

    Article  PubMed  Google Scholar 

  33. van Dyck L, Neupert W, Langer T (1998) The ATP-dependent PIM1 protease is required for the expression of intron-containing genes in mitochondria. Genes Dev 12(10):1515–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sanchirico M, Tzellas A, Fox TD et al (1995) Relocation of the unusual VAR1 gene from the mitochondrion to the nucleus. Biochem Cell Biol 73(11–12):987–995

    Article  CAS  PubMed  Google Scholar 

  35. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62(2):334–361. https://doi.org/10.1128/MMBR.62.2.334-361.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Visser W, van Spronsen EA, Nanninga N et al (1995) Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 67(3):243–253. https://doi.org/10.1007/BF00873688

    Article  CAS  PubMed  Google Scholar 

  37. Morgenstern M, Stiller SB, Lubbert P et al (2017) Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep 19(13):2836–2852. https://doi.org/10.1016/j.celrep.2017.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim JH, Roy A, Jouandot D 2nd et al (2013) The glucose signalg network in yeast. Biochim Biophys Acta 1830(11):5204–5210. https://doi.org/10.1016/j.bbagen.2013.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zaman S, Lippman SI, Zhao X et al (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  CAS  PubMed  Google Scholar 

  40. Ulery TL, Jang SH, Jaehning JA (1994) Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol Cell Biol 14(2):1160–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kayikci O, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15(6). https://doi.org/10.1093/femsyr/fov068

  42. Richter-Dennerlein R, Oeljeklaus S, Lorenzi I et al (2016) Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167(2):471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Couvillion MT, Soto IC, Shipkovenska G et al (2016) Synchronized mitochondrial and cytosolic translation programs. Nature 533(7604):499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang JX, Thompson K, Taylor RW et al (2020) Mitochondrial OXPHOS biogenesis: co-regulation of protein synthesis, import, and assembly pathways. Int J Mol Sci 21(11). https://doi.org/10.3390/ijms21113820

  45. Anderson JM, Box JM, Stuart RA (2022) The mitospecific domain of Mrp7 (bL27) supports mitochondrial translation during fermentation and is required for effective adaptation to respiration. Mol Biol Cell 33(1):ar7. https://doi.org/10.1091/mbc.E21-07-0370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Horn D, Fontanesi F, Barrientos A (2008) Exploring protein-protein interactions involving newly synthesized mitochondrial DNA-encoded proteins. Methods Mol Biol 457:125–139

    Article  CAS  PubMed  Google Scholar 

  47. Choi A, Barrientos A (2021) Sucrose gradient sedimentation analysis of mitochondrial ribosomes. Methods Mol Biol 2192:211–226. https://doi.org/10.1007/978-1-0716-0834-0_16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vignais PV, Stevens BJ, Huet J et al (1972) Mitoribosomes from Candida utilis. Morphological, physical, and chemical characterization of the monomer form and of its subunits. J Cell Biol 54(3):468–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gomori G. Preparation of buffers for use in enzyme studies. In: Press A. Methods in enzymology. Elsevier; 1955. p. 138–146

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Institutes of Health grant R35-GM118141 (AB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Barrientos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Del’Olio, S., Barrientos, A. (2023). Systematic Analysis of Assembly Intermediates in Yeast to Decipher the Mitoribosome Assembly Pathway. In: Barrientos, A., Fontanesi, F. (eds) The Mitoribosome. Methods in Molecular Biology, vol 2661. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3171-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3171-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3170-6

  • Online ISBN: 978-1-0716-3171-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics