Skip to main content

Carbohydrate Depolymerization by Intricate Cellulosomal Systems

  • Protocol
  • First Online:
Carbohydrate-Protein Interactions

Abstract

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artzi L, Bayer EA, Morais S (2017) Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol 15:83–95

    Article  CAS  PubMed  Google Scholar 

  2. Himmel ME, Xu Q, Luo Y, Ding S-Y, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341

    Article  CAS  Google Scholar 

  3. Lamed R, Setter E, Kenig R, Bayer EA (1983) The cellulosome – a discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181

    CAS  Google Scholar 

  4. Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multi-enzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  PubMed  Google Scholar 

  6. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, Huang Y, Zhou Z, Bayer EA (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamberg Y, Ruimy-Israeli V, Dassa B, Barak Y, Lamed R, Cameron K, Fontes CM, Bayer EA, Fried DB (2014) Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. PeerJ 2:e636

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rincon MT, Dassa B, Flint HJ, Travis AR, Jindou S, Borovok I, Lamed R, Bayer EA, Henrissat B, Coutinho PM, Antonopoulos DA, Berg ME, White BA (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD1. PLoS One 5:e12476

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhivin O, Dassa B, Moraïs S, Uttukar SM, Brown SD, Henrissat B, Lamed R, Bayer EA (2017) Unique organization and unprecedented diversity of the Bacteroides (Pseudobacteroides) cellulosolvens cellulosome system. Biotechnol Biofuels 10:211

    Article  PubMed  PubMed Central  Google Scholar 

  10. Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, Tapia R, Han S, Land M, Hauser L, Jeffries CD, Han J, Pitluck S, Nolan M, Chen A, Huntemann M, Mavromatis K, Mikhailova N, Liolios K, Woyke T, Lynd LR (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6:104–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Artzi L, Dassa B, Borovok I, Shamshoum M, Lamed R, Bayer EA (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100

    Article  PubMed  PubMed Central  Google Scholar 

  12. Artzi L, Morag E, Barak Y, Lamed R, Bayer EA (2015) Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. MBio 6:e00411–e00415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoav S, Barak Y, Shamshoum M, Borovok I, Lamed R, Dassa B, Hadar Y, Morag E, Bayer EA (2017) How does cellulosome composition influence deconstruction of lignocellulosic substrates in Clostridium (Ruminiclostridium) thermocellum DSM 1313. Biotechnol Biofuels 10:222

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR (2011) Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 11:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zverlov VV, Kellermann J, Schwarz WH (2005) Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 5:3646–3653

    Article  CAS  PubMed  Google Scholar 

  16. Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pages S, de Philip P (2010) Modulation of cellulosome composition in Clostridium cellulolyticum: adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 10:541–554

    Article  CAS  PubMed  Google Scholar 

  17. Gold ND, Martin VJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189:6787–6795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA (2019) Unraveling essential cellulosomal components of the (Pseudo)Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. Biotechnol Biofuels 12:115

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bayer EA, Morag E, Lamed R (1994) The cellulosome – a treasure-trove for biotechnology. Trends Biotechnol 12:379–386

    Article  CAS  PubMed  Google Scholar 

  20. Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–527

    Article  PubMed  Google Scholar 

  21. Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7:e00083–e00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose−/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770

    Article  CAS  PubMed  Google Scholar 

  23. Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Lamed R, Bayer EA (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979

    Article  CAS  PubMed  Google Scholar 

  24. Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA (2005) Matching fusion-protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recogit 18:491–501

    Article  CAS  Google Scholar 

  25. Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, pp 216–266

    Google Scholar 

  26. Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bayer EA, Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ, Hettich RL, Brown SD, Lynd LR, Bayer EA, Himmel ME, Bomble YJ (2016) Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2:e1501254

    Article  PubMed  PubMed Central  Google Scholar 

  30. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y (1995) Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fendri ICT, Fierobe H-P, Lignon S, Valette O, Pagès S, Perret S (2009) The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276:3076–3086

    Article  CAS  PubMed  Google Scholar 

  33. Han SO, Yukawa H, Inui M, Doi RH (2005) Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:1491–1497

    Article  CAS  PubMed  Google Scholar 

  34. Fierobe H-P, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, Belaich J-P, Bayer EA (2001) Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276:21257–21261

    Article  CAS  PubMed  Google Scholar 

  35. Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe H-P, Wilson DB, Bayer EA (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransformation 24:3–12

    Article  CAS  Google Scholar 

  36. Caspi J, Irwin D, Lamed R, Fierobe H-P, Wilson DB, Bayer EA (2008) Conversion of noncellulosomal Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357

    Article  CAS  PubMed  Google Scholar 

  37. Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA (2009) Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 75:7335–7342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fierobe H-P, Mingardon F, Mechaly A, Belaich A, Rincon MT, Lamed R, Tardif C, Belaich J-P, Bayer EA (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined tri-functional scaffoldin. J Biol Chem 280:16325–16334

    Article  CAS  PubMed  Google Scholar 

  39. Caspi J, Barak Y, Haimovitz R, Gilary H, Irwin D, Lamed R, Wilson DB, Bayer EA (2010) Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4:193–201

    Article  PubMed  PubMed Central  Google Scholar 

  40. Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1:e00285–e00210

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moraïs S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio 3:e00508–e00512

    Article  PubMed  PubMed Central  Google Scholar 

  42. Szczupak A, Aizik D, Moraïs S, Vazana Y, Barak Y, Bayer EA, Alfonta L (2017) The electrosome: a surface-displayed enzymatic cascade in a biofuel cell’s anode and a high-density surface-displayed biocathodic enzyme. Nano 7:153

    Google Scholar 

  43. Dvorak P, Bayer EA, de Lorenzo V (2020) Surface display of designer protein scaffolds on genome-reduced strains of Pseudomonas putida. ACS Synth Biol 9:2749–2764

    Article  CAS  PubMed  Google Scholar 

  44. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe H-P (2007) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mingardon F, Chanal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arfi Y, Shamshoum M, Rogachev I, Peleg Y, Bayer EA (2014) Integration of bacterial polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davidi L, Moraïs S, Artzi L, Knop D, Hadar Y, Arfi Y, Bayer EA (2016) Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome. Proc Natl Acad Sci USA 113:10854–10859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratories, Cold Spring Harbor, New York

    Google Scholar 

  49. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Tolowa, pp 571–607

    Chapter  Google Scholar 

  50. Vazana Y, Moraïs S, Barak Y, Lamed R, Bayer EA (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452

    Article  CAS  PubMed  Google Scholar 

  51. Adams JJ, Webb BA, Spencer HL, Smith SP (2005) Structural characterization of type II dockerin module from the cellulosome of clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 44:2173–2182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moraïs, S., Stern, J., Artzi, L., Fontes, C.M.G.A., Bayer, E.A., Mizrahi, I. (2023). Carbohydrate Depolymerization by Intricate Cellulosomal Systems. In: Abbott, D.W., Zandberg, W.F. (eds) Carbohydrate-Protein Interactions. Methods in Molecular Biology, vol 2657. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3151-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3151-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3150-8

  • Online ISBN: 978-1-0716-3151-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics