Skip to main content

BZ Junctions and Its Application as Probe (2AP) to Detect Z-DNA Formation and Its Effector

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

  • 834 Accesses

Abstract

The left-handed Z-DNA is surrounded by right-handed canonical B-DNA, and thus the junction between B- and Z-DNA has been occurred during temporal Z-DNA formation in the genome. The base extrusion structure of the BZ junction may help detect Z-DNA formation in DNAs. Here we describe the BZ junction structural detection by using 2-aminopurine (2AP) fluorescent probe. BZ junction formation can be measured in solution by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282(5740):680–686. https://doi.org/10.1038/282680a0

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz T, Behlke J, Lowenhaupt K, Heinemann U, Rich A (2001) Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat Struct Biol 8(9):761–765. https://doi.org/10.1038/nsb0901-761

    Article  CAS  PubMed  Google Scholar 

  3. Ha SC, Lokanath NK, Van Quyen D, Wu CA, Lowenhaupt K, Rich A, Kim YG, Kim KK (2004) A poxvirus protein forms a complex with left-handed Z-DNA: crystal structure of a Yatapoxvirus Zalpha bound to DNA. Proc Natl Acad Sci U S A 101(40):14367–14372. https://doi.org/10.1073/pnas.0405586101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim D, Hur J, Park K, Bae S, Shin D, Ha SC, Hwang HY, Hohng S, Lee JH, Lee S, Kim YG, Kim KK (2014) Distinct Z-DNA binding mode of a PKR-like protein kinase containing a Z-DNA binding domain (PKZ). Nucleic Acids Res 42(9):5937–5948. https://doi.org/10.1093/nar/gku189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284(5421):1841–1845. https://doi.org/10.1126/science.284.5421.1841

    Article  CAS  PubMed  Google Scholar 

  6. Wittig B, Dorbic T, Rich A (1991) Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei. Proc Natl Acad Sci U S A 88(6):2259–2263. https://doi.org/10.1073/pnas.88.6.2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim D, Lee YH, Hwang HY, Kim KK, Park HJ (2010) Z-DNA binding proteins as targets for structure-based virtual screening. Curr Drug Targets 11(3):335–344. https://doi.org/10.2174/138945010790711905

    Article  CAS  PubMed  Google Scholar 

  8. Wang G, Christensen LA, Vasquez KM (2006) Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A 103(8):2677–2682. https://doi.org/10.1073/pnas.0511084103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbert A (2019) Z-DNA and Z-RNA in human disease. Commun Biol 2:7. https://doi.org/10.1038/s42003-018-0237-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beknazarov N, Jin S, Poptsova M (2020) Deep learning approach for predicting functional Z-DNA regions using omics data. Sci Rep 10(1):19134. https://doi.org/10.1038/s41598-020-76203-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vongsutilers V, Gannett PM (2018) C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 16(13):2198–2209. https://doi.org/10.1039/c8ob00030a

    Article  CAS  PubMed  Google Scholar 

  12. Zhabinskaya D, Benham CJ (2011) Theoretical analysis of the stress induced B-Z transition in superhelical DNA. PLoS Comput Biol 7(1):e1001051. https://doi.org/10.1371/journal.pcbi.1001051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schroth GP, Chou PJ, Ho PS (1992) Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 267(17):11846–11855

    Article  CAS  PubMed  Google Scholar 

  14. Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437(7062):1183–1186. https://doi.org/10.1038/nature04088

    Article  CAS  PubMed  Google Scholar 

  15. Kim D, Hur J, Han JH, Ha SC, Shin D, Lee S, Park S, Sugiyama H, Kim KK (2018) Sequence preference and structural heterogeneity of BZ junctions. Nucleic Acids Res 46(19):10504–10513. https://doi.org/10.1093/nar/gky784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsen OF, van Stokkum IH, Gobets B, van Grondelle R, van Amerongen H (2001) Probing the structure and dynamics of a DNA hairpin by ultrafast quenching and fluorescence depolarization. Biophys J 81(2):1115–1126. https://doi.org/10.1016/S0006-3495(01)75768-2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holz B, Klimasauskas S, Serva S, Weinhold E (1998) 2-aminopurine as a fluorescent probe for DNA base flipping by methyltransferases. Nucleic Acids Res 26(4):1076–1083. https://doi.org/10.1093/nar/26.4.1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim D, Reddy S, Kim DY, Rich A, Lee S, Kim KK, Kim YG (2009) Base extrusion is found at helical junctions between right- and left-handed forms of DNA and RNA. Nucleic Acids Res 37(13):4353–4359. https://doi.org/10.1093/nar/gkp364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Subramani VK, Ravichandran S, Bansal V, Kim KK (2019) Chemical-induced formation of BZ-junction with base extrusion. Biochem Biophys Res Commun 508(4):1215–1220. https://doi.org/10.1016/j.bbrc.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  20. Subramani VK, Kim D, Yun K, Kim KK (2016) Structural and functional studies of a large winged Z-DNA-binding domain of Danio rerio protein kinase PKZ. FEBS Lett 590(14):2275–2285. https://doi.org/10.1002/1873-3468.12238

    Article  CAS  PubMed  Google Scholar 

  21. Ho PS, Ellison MJ, Quigley GJ, Rich A (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5(10):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science, and Technology (MSIT) of the Korean government (2020RC1C1C1007371 to D.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doyoun Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, M., Kim, D. (2023). BZ Junctions and Its Application as Probe (2AP) to Detect Z-DNA Formation and Its Effector. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics