Skip to main content

DeepZ: A Deep Learning Approach for Z-DNA Prediction

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

  • 1010 Accesses

Abstract

Here we describe an approach that uses deep learning neural networks such as CNN and RNN to aggregate information from DNA sequence; physical, chemical, and structural properties of nucleotides; and omics data on histone modifications, methylation, chromatin accessibility, and transcription factor binding sites and data from other available NGS experiments. We explain how with the trained model one can perform whole-genome annotation of Z-DNA regions and feature importance analysis in order to define key determinants for functional Z-DNA regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li H, Xiao J, Li J, Lu L, Feng S, Droge P (2009) Human genomic Z-DNA segments probed by the Z alpha domain of ADAR1. Nucleic Acids Res 37(8):2737–2746. https://doi.org/10.1093/nar/gkp124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herbert A (2020) ALU non-B-DNA conformations, flipons, binary codes and evolution. R Soc Open Sci 7(6):200222. https://doi.org/10.1098/rsos.200222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Herbert A, Alfken J, Kim YG, Mian IS, Nishikura K, Rich A (1997) A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A 94(16):8421–8426. https://doi.org/10.1073/pnas.94.16.8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin SI, Ham S, Park J, Seo SH, Lim CH, Jeon H, Huh J, Roh TY (2016) Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res 23:477. https://doi.org/10.1093/dnares/dsw031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh R, Lanchantin J, Robins G, Qi Y (2016) DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics 32(17):i639–i648. https://doi.org/10.1093/bioinformatics/btw427

    Article  CAS  PubMed  Google Scholar 

  6. Sekhon A, Singh R, Qi Y (2018) DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications. Bioinformatics 34(17):i891–i900. https://doi.org/10.1093/bioinformatics/bty612

    Article  CAS  PubMed  Google Scholar 

  7. Yin Q, Wu M, Liu Q, Lv H, Jiang R (2019) DeepHistone: a deep learning approach to predicting histone modifications. BMC Genomics 20(Suppl 2):193. https://doi.org/10.1186/s12864-019-5489-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ben-Bassat I, Chor B, Orenstein Y (2018) A deep neural network approach for learning intrinsic protein-RNA binding preferences. Bioinformatics 34(17):i638–i646. https://doi.org/10.1093/bioinformatics/bty600

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Shi W, Wasserman WW (2018) Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. BMC Bioinform 19(1):202. https://doi.org/10.1186/s12859-018-2187-1

    Article  CAS  Google Scholar 

  10. Beknazarov N, Jin S, Poptsova M (2020) Deep learning approach for predicting functional Z-DNA regions using omics data. Sci Rep 10(1):19134. https://doi.org/10.1038/s41598-020-76203-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu T, Lyu R, You Q, He C (2020) Kethoxal-assisted single-stranded DNA sequencing captures global transcription dynamics and enhancer activity in situ. Nat Methods 17(5):515–523. https://doi.org/10.1038/s41592-020-0797-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kouzine F, Wojtowicz D, Baranello L, Yamane A, Nelson S, Resch W, Kieffer-Kwon KR, Benham CJ, Casellas R, Przytycka TM, Levens D (2017) Permanganate/S1 nuclease footprinting reveals non-B DNA structures with regulatory potential across a mammalian genome. Cell Syst 4(3):344–356. e347. https://doi.org/10.1016/j.cels.2017.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amemiya HM, Kundaje A, Boyle AP (2019) The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep 9(1):9354. https://doi.org/10.1038/s41598-019-45839-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ho PS, Ellison MJ, Quigley GJ, Rich A (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5(10):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao Y, Li L, Yuan P, Zhai F, Ren Y, Yan L, Li R, Lian Y, Zhu X, Wu X, Kee K, Wen L, Qiao J, Tang F (2020) 5-Formylcytosine landscapes of human preimplantation embryos at single-cell resolution. PLoS Biol 18(7):e3000799. https://doi.org/10.1371/journal.pbio.3000799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015) Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol 33(8):831–838. https://doi.org/10.1038/nbt.3300

    Article  CAS  PubMed  Google Scholar 

  17. Kalkatawi M, Magana-Mora A, Jankovic B, Bajic VB (2019) DeepGSR: an optimized deep-learning structure for the recognition of genomic signals and regions. Bioinformatics 35(7):1125–1132. https://doi.org/10.1093/bioinformatics/bty752

    Article  CAS  PubMed  Google Scholar 

  18. Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:13126034

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Poptsova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Beknazarov, N., Poptsova, M. (2023). DeepZ: A Deep Learning Approach for Z-DNA Prediction. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics