Skip to main content

Thermogenomic Analysis of Left-Handed Z-DNA Propensities in Genomes

  • Protocol
  • First Online:
Z-DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2651))

Abstract

The initial discovery of left-handed Z-DNA was met with great excitement as a dramatic alternative to the right-handed double-helical conformation of canonical B-DNA. In this chapter, we describe the workings of the program ZHUNT as a computational approach to mapping Z-DNA in genomic sequences using a rigorous thermodynamic model for the transition between the two conformations (the B–Z transition). The discussion starts with a brief summary of the structural properties that differentiate Z- from B-DNA, focusing on those properties that are particularly relevant to the B–Z transition and the junction that splices a left- to right-handed DNA duplex. We then derive the statistical mechanics (SM) analysis of the zipper model that describes the cooperative B–Z transition and show that this analysis very accurately simulates this behavior of naturally occurring sequences that are induced to undergo the B–Z transition through negative supercoiling. A description of the ZHUNT algorithm and its validation are presented, followed by how the program had been applied for genomic and phylogenomic analyses in the past and how a user can access the online version of the program. Finally, we present a new version of ZHUNT (called mZHUNT) that has been parameterized to analyze sequences that contain 5-methylcytosine bases and compare the results of the ZHUNT and mZHUNT analyses on native and methylated yeast chromosome 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79(2):137–158. https://doi.org/10.1084/jem.79.2.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36(1):39–56. https://doi.org/10.1085/jgp.36.1.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watson JD, Crick FH (1953) Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  CAS  PubMed  Google Scholar 

  4. Wang AHJ, Quigley GJ, Kolpak FJ, Crawford JL, Vanboom JH, Vandermarel G et al (1979) Molecular-structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282(5740):680–686. https://doi.org/10.1038/282680a0

    Article  CAS  PubMed  Google Scholar 

  5. Gannon HS, Zou T, Kiessling MK, Gao GF, Cai D, Choi PS et al (2018) Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat Comm 9:5450. https://doi.org/10.1038/s41467-018-07824-4

    Article  CAS  Google Scholar 

  6. Suram A, Rao LKS, Latha KS, Viswamitra MA (2002) First evidence to show the topological change of DNA from B-DNA to Z-DNA conformation in the hippocampus of Alzheimer’s brain. NeuroMolecular Med 2(3):289–297. https://doi.org/10.1385/Nmm:2:3:289

    Article  CAS  PubMed  Google Scholar 

  7. Mitsui Y, Langridge R, Shortle BE, Cantor CR, Grant RC, Kodama M et al (1970) Physical and enzymatic studies on poly D(I-C) poly D(I-C), an unusual double-helical DNA. Nature 228(5277):1166. https://doi.org/10.1038/2281166a0

    Article  CAS  PubMed  Google Scholar 

  8. Pohl FM, Jovin TM (1972) Salt-induced cooperative conformational change of a synthetic DNA – equilibrium and kinetic studies with poly(dg-dc). J Mol Biol 67(3):375. https://doi.org/10.1016/0022-2836(72)90457-3

    Article  CAS  PubMed  Google Scholar 

  9. Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K et al (1980) Crystal-structure analysis of a complete turn of B-DNA. Nature 287(5784):755–758. https://doi.org/10.1038/287755a0

    Article  CAS  PubMed  Google Scholar 

  10. Ho PS, Mooers BHM (1997) Z-DNA crystallography. Biopolymers 44(1):65–90. https://doi.org/10.1002/(Sici)1097-0282(1997)44:1<65::Aid-Bip5>3.0.Co;2-Y

    Article  CAS  Google Scholar 

  11. Kagawa TF, Stoddard D, Zhou GW, Ho PS (1989) Quantitative analysis of DNA secondary structure from solvent-accessible surfaces: the B- to Z-DNA transition as a model. Biochemistry 28(16):6642–6651

    Article  CAS  PubMed  Google Scholar 

  12. Ho PS, Kagawa TF, Tseng K, Schroth GP, Zhou GW (1991) Prediction of a crystallization pathway for Z-DNA Hexanucleotides. Science 254(5034):1003–1006. https://doi.org/10.1126/science.1948069

    Article  CAS  PubMed  Google Scholar 

  13. Behe M, Felsenfeld G (1981) Effects of methylation on a synthetic polynucleotide – the B-Z transition in poly(dG-m5dC).Poly(dG-m5dC). Proc Natl Acad Sci USA 78(3):1619–1623. https://doi.org/10.1073/pnas.78.3.1619

  14. Kagawa TF, Howell ML, Tseng K, Ho PS (1993) Effects of base substituents on the hydration of B- and Z-DNA: correlations to the B- to Z-DNA transition. Nucleic Acids Res 21(25):5978–5986. https://doi.org/10.1093/nar/21.25.5978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Howell ML, Schroth GP, Ho PS (1996) Sequence-dependent effects of spermine on the thermodynamics of the B-DNA to Z-DNA transition. Biochemistry 35(48):15373–15382. https://doi.org/10.1021/bi961881i

    Article  CAS  PubMed  Google Scholar 

  16. Peck LJ, Nordheim A, Rich A, Wang JC (1982) Flipping of cloned D(Pcpg)N.D(Pcpg)N DNA-sequences from right-handed to left-handed helical structure by salt, co(iii), or negative supercoiling. Proc Natl Acad Sci, USA 79(15):4560–4564. https://doi.org/10.1073/pnas.79.15.4560

  17. Nordheim A, Peck LJ, Lafer EM, Stollar BD, Wang JC, Rich A (1983) Supercoiling and left-handed Z-DNA. Cold Spring Harb Symp Quant Biol 47(Pt 1):93–100

    Article  PubMed  Google Scholar 

  18. Peck LJ, Wang JC (1983) Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci U S A 80(20):6206–6210. https://doi.org/10.1073/pnas.80.20.6206

  19. Wang JC, Peck LJ, Becherer K (1983) DNA supercoiling and its effects on DNA structure and function. Cold Spring Harb Symp Quant Biol 47(Pt 1):85–91

    Article  PubMed  Google Scholar 

  20. Nickol J, Behe M, Felsenfeld G (1982) Effect of the B--Z transition in poly(dG-m5dC). poly(dG-m5dC) on nucleosome formation. Proc Natl Acad Sci U S A 79(6):1771–1775

    Google Scholar 

  21. Ausio J, Zhou G, van Holde K (1987) A reexamination of the reported B----Z DNA transition in nucleosomes reconstituted with poly(dG-m5dC).poly(dG-m5dC). Biochemistry 26(18):5595–5599

    Google Scholar 

  22. Liu LF, Wang JC (1987) Supercoiling of the DNA-template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027. https://doi.org/10.1073/pnas.84.20.7024

  23. Ellison MJ, Kelleher RJ 3rd, Wang AH, Habener JF, Rich A (1985) Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc Natl Acad Sci U S A 82(24):8320–8324

    Google Scholar 

  24. Ellison MJ, Feigon J, Kelleher RJ 3rd, Wang AH, Habener JF, Rich A (1986) An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids. Biochemistry 25(12):3648–3655

    Article  CAS  PubMed  Google Scholar 

  25. Dickerson RE (1992) DNA-structure from A to Z. Method Enzymol 211:67–111

    Article  CAS  Google Scholar 

  26. Ha SC, Lowenhaupt K, Rich A, Kim YG, Kim KK (2005) Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437(7062):1183–1186

    Article  CAS  PubMed  Google Scholar 

  27. Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31(2):526–535. https://doi.org/10.1063/1.1730390

    Article  CAS  Google Scholar 

  28. Nordheim A, Lafer EM, Peck LJ, Wang JC, Stollar BD, Rich A (1982) Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody-binding. Cell 31(2):309–318. https://doi.org/10.1016/0092-8674(82)90124-6

    Article  CAS  PubMed  Google Scholar 

  29. Pulleyblank DE, Haniford DB, Morgan AR (1985) A structural basis for S1 nuclease sensitivity of double-stranded DNA. Cell 42(1):271–280. https://doi.org/10.1016/S0092-8674(85)80122-7

    Article  CAS  PubMed  Google Scholar 

  30. Dicapua E, Stasiak A, Koller T, Brahms S, Thomae R, Pohl FM (1983) Torsional stress induces left-handed helical stretches in DNA of Natural Base sequence - circular-dichroism and antibody-binding. EMBO J 2(9):1531–1535. https://doi.org/10.1002/j.1460-2075.1983.tb01619.x

    Article  CAS  Google Scholar 

  31. Revet B, Zarling DA, Jovin TM, Delain E (1984) Different Z DNA forming sequences are revealed in phi-X174 Rfi by high-resolution dark-field Immuno-electron microscopy. EMBO J 3(13):3353–3358. https://doi.org/10.1002/j.1460-2075.1984.tb02303.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho PS, Ellison MJ, Quigley GJ, Rich A (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J 5(10):2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho PS (2009) Thermogenomics: thermodynamic-based approaches to genomic analyses of DNA structure. Methods 47(3):159–167. https://doi.org/10.1016/j.ymeth.2008.09.007

    Article  CAS  PubMed  Google Scholar 

  34. Kladde MP, Kohwi Y, Kohwi-Shigematsu T, Gorski J (1994) The non-B-DNA structure of d(CA/TG)n differs from that of Z-DNA. Proc Natl Acad Sci U S A 91(5):1898–1902

    Google Scholar 

  35. Ho PS (1994) The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. Proc Natl Acad Sci U S A 91(20):9549–9553

    Google Scholar 

  36. Collins FS (1991) The genome project and human health. FASEB J 5(1):77

    Article  CAS  PubMed  Google Scholar 

  37. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  38. Szustakowski J, Consor IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. 411(6838):720

    Article  Google Scholar 

  39. Schroth GP, Chou PJ, Ho PS (1992) Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 267(17):11846–11855

    Article  CAS  PubMed  Google Scholar 

  40. Liu R, Liu H, Chen X, Kirby M, Brown PO, Zhao K (2001) Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106(3):309–318

    Article  CAS  PubMed  Google Scholar 

  41. Champ PC, Maurice S, Vargason JM, Camp T, Ho PS (2004) Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Res 32(22):6501–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins FS, Lander ES, Rogers J, Waterston RH, Conso IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011):931–945. https://doi.org/10.1038/nature03001

    Article  CAS  Google Scholar 

  43. Khuu P, Sandor M, DeYoung J, Ho PS (2007) Phylogenomic analysis of the emergence of GC-rich transcription elements. Proc Natl Acad Sci U S A 104(42):16528–16533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ et al (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  45. Mulligan CJ (2018) Insights from epigenetic studies on human health and evolution. Curr Opin Genet Dev 53:36–42. https://doi.org/10.1016/j.gde.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  46. Ho PS, Quigley GJ, Tilton RF Jr, Rich A (1988) Hydration of methylated and nonmethylated B-DNA and Z-DNA. J Phys Chem 92:939–945

    Article  CAS  Google Scholar 

  47. Wang YH, Wang AQ, Liu ZJ, Thurman AL, Powers LS, Zou M et al (2019) Single-molecule long-read sequencing reveals the chromatin basis of gene expression. Genome Res 29(8):1329–1342. https://doi.org/10.1101/gr.251116.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhabinskaya D, Benham CJ (2011) Theoretical analysis of the stress induced B-Z transition in superhelical DNA. PLoS Comput Biol 7(1):e1001051. https://doi.org/10.1371/journal.pcbi.1001051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Xiao J, Li JM, Lu L, Feng S, Droge P (2009) Human genomic Z-DNA segments probed by the Z domain of ADAR1. Nucleic Acids Res 37(8):2737–2746. https://doi.org/10.1093/nar/gkp124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beknazarov N, Jin S, Poptsova M (2020) Deep learning approach for predicting functional Z-DNA regions using omics data. Sci Rep UK 10(1):19134. https://doi.org/10.1038/s41598-020-76203-1

    Article  CAS  Google Scholar 

  51. Shin SI, Ham S, Park J, Seo SH, Lim CH, Jeon H et al (2016) Z-DNA-forming sites identified by ChIP-Seq are associated with actively transcribed regions in the human genome. DNA Res 23(5):477–486. https://doi.org/10.1093/dnares/dsw031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K et al (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A 78:2179–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo ZP, Dauter M, Dauter Z (2014) Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution. Acta Crystallogr Sect D Struct Biol 70:1790–1800. https://doi.org/10.1107/S1399004714004684

    Article  CAS  Google Scholar 

  54. Carter M, Ho PS (2011) DNA structure: alphabet soup for the cellular soul. In: Seligmann H (ed) DNA replication – current advances. InTech, London, pp 3–28

    Google Scholar 

Download references

Acknowledgments

The studies in Ho laboratory were supported by a grant from the National Science Foundation (CHE-1905328 and MCB-2124202). We thank A. N. Ho for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Shing Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Czarny, R.S., Ho, P.S. (2023). Thermogenomic Analysis of Left-Handed Z-DNA Propensities in Genomes. In: Kim, K.K., Subramani, V.K. (eds) Z-DNA. Methods in Molecular Biology, vol 2651. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3084-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3084-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3083-9

  • Online ISBN: 978-1-0716-3084-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics