Skip to main content

Genome Editing of Pig

  • Protocol
  • First Online:
Genome Editing in Animals

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2637))

  • 1368 Accesses

Abstract

Pigs have anatomical and physiological characteristics similar to humans; therefore, genetically modified pigs have the potential to become a valuable bioresource in biomedical research. In fact, considering the increasing need for translational research, pigs are useful for studying intractable diseases, organ transplantation, and regenerative medicine as large-scale experimental animals with excellent potential for extrapolation to humans. With the advent of zinc finger nucleases (ZFNs), breakthroughs in genome editing tools such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) have facilitated the efficient generation of genetically modified pigs. Genome editing has been used in pigs for more than 10 years; now, along with knockout pigs, knock-in pigs are also gaining increasing importance. In this chapter, we describe the establishment of gene-modified cells (nuclear donor cells), which are necessary for gene knockout and production of knock-in pigs via somatic cell nuclear transplantation, as well as the production of gene knockout pigs using a simple cytoplasmic injection method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matsunari H, Nagashima H (2009) Application of genetically modified and cloned pigs in translational research. J Reprod Dev 55:225–230

    Article  CAS  Google Scholar 

  2. Luo Y, Lin L, Bolund L et al (2012) Genetically modified pigs for biomedical research. J Inherit Metab Dis 35:695–713

    Article  CAS  Google Scholar 

  3. Perleberg C, Kind A, Schnieke A (2018) Genetically engineered pigs as models for human disease. Dis Model Mech 11:dmm030783

    Article  Google Scholar 

  4. Kim AJ, Xu N, Umeyama K, Hulin A et al (2020) Deficiency of circulating monocytes ameliorates the progression of myxomatous valve degeneration in Marfan syndrome. Circulation 141:132–146

    Article  Google Scholar 

  5. Watanabe M, Nakano K, Matsunari H et al (2013) Generation of interleukin-2 receptor gamma gene knockout pigs from somatic cells genetically modified by zinc finger nuclease-encoding mRNA. PlosOne 8:e76478

    Article  CAS  Google Scholar 

  6. Watanabe M, Umeyama K, Nakano K et al (2022) Generation of heterozygous PKD1 mutant pigs exhibiting early-onset renal cyst formation. Lab Invest 102:560–569

    Google Scholar 

  7. Polejaeva IA, Chen SH, Vaught TD et al (2000) Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407:86–90

    Article  CAS  Google Scholar 

  8. Onishi A, Iwamoto M, Akita T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    Article  CAS  Google Scholar 

  9. Lai L, Kolber-Simonds D, Park KW et al (2002) Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089–1092

    Article  CAS  Google Scholar 

  10. Shiue YL, Yang JR, Liao YJ et al (2016) Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology 86:176–181

    Article  Google Scholar 

  11. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  Google Scholar 

  12. Boch J, Scholze H, Schornack S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  Google Scholar 

  13. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  Google Scholar 

  14. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  15. Mali P, Yang L, Esvelt KM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  16. Watanabe M, Umeyama K, Matsunari H et al (2010) Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases. Biochem Biophys Res Commun 402:14–18

    Article  CAS  Google Scholar 

  17. Whyte JJ, Zhao J, Wells KD et al (2011) Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev 78:2

    Article  CAS  Google Scholar 

  18. Hauschild J, Petersen B, Santiago Y et al (2011) Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 108:12013–12017

    Article  CAS  Google Scholar 

  19. Carlson DF, Tan W, Lillico SG et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  CAS  Google Scholar 

  20. Hai T, Teng F, Guo R et al (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  Google Scholar 

  21. Umeyama K, Watanabe K, Watanabe M et al (2016) Generation of heterozygous fibrillin-1 mutant cloned pigs from genome-edited foetal fibroblasts. Sci Rep 6:24413

    Article  CAS  Google Scholar 

  22. Miyagawa S, Matsunari H, Watanabe M et al (2015) Generation of α1,3-galactosyltransferase and cytidine monophospho-N-acetylneuraminic acid hydroxylase gene double-knockout pigs. J Reprod Dev 61:449–457

    Article  CAS  Google Scholar 

  23. Nagashima H, Matsunari H (2016) Growing human organs in pigs-A dream or reality? Theriogenology 86:422–426

    Article  Google Scholar 

  24. Watanabe M, Nakano K, Uchikura A et al (2019) Anephrogenic phenotype induced by SALL1 gene knockout in pigs. Sci Rep 9:8016

    Article  Google Scholar 

  25. Matsunari H, Watanabe M, Hasegawa K et al (2020) Compensation of disabled organogenesis in genetically modified pig fetuses by blastocyst complementation. Stem Cell Rep 14:21–23

    Article  Google Scholar 

  26. Rao S, Fujimura T, Matsunari H et al (2016) Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets. Mol Reprod Dev 83:61–70

    Article  CAS  Google Scholar 

  27. Whitworth KM, Rowland RR, Ewen CL et al (2016) Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol 34:20–22

    Article  CAS  Google Scholar 

  28. Xie Z, Pang D, Yuan H et al (2018) Genetically modified pigs are protected from classical swine fever virus. PLoS Pathog 14:e1007193

    Article  Google Scholar 

  29. Tanihara F, Takemoto T, Kitagawa E et al (2016) Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2:e1600803

    Article  Google Scholar 

  30. Sato M, Koriyama M, Watanabe S et al (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for indel mutations. Int J Mol Sci 16:17838–17856

    Article  CAS  Google Scholar 

  31. Peng J, Wang Y, Jiang J et al (2015) Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5:16705

    Article  Google Scholar 

  32. Mehravar M, Shirazi A, Nazari M et al (2019) Mosaicism in CRISPR/Cas9-mediated genome editing. Dev Biol 445:152–162

    Article  Google Scholar 

  33. Nottle MB, Salvaris EJ, Fisicaro N et al (2017) Targeted insertion of an anti-CD2 monoclonal antibody transgene into the GGTA1 locus in pigs using FokI-dCas9. Sci Rep 7:8383

    Article  Google Scholar 

  34. Yan S, Tu Z, Liu Z et al (2018) A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173:989–1002.e13

    Article  CAS  Google Scholar 

  35. Zou X, Ouyang H, Yu T et al (2019) Preparation of a new type 2 diabetic miniature pig model via the CRISPR/Cas9 system. Cell Death Dis 10:823

    Article  Google Scholar 

  36. Tanihara F, Hirata M, Otoi T (2021) Current status of the application of gene editing in pigs. J Reprod Dev 67:177–187

    Article  CAS  Google Scholar 

  37. Kurome M, Kessler B, Wuensch A et al (2015) Nuclear transfer and transgenesis in the pig. Methods Mol Biol 1222:37–5925

    Article  CAS  Google Scholar 

  38. Sato M, Ohtsuka M, Miura H et al (2012) Determination of the optimal concentration of several selective drugs useful for generating multi-transgenic porcine embryonic fibroblasts. Reprod Domest Anim 47:759–765

    Article  CAS  Google Scholar 

  39. Doyon Y, Choi VM, Xia DF et al (2010) Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods 7:459–460

    Article  CAS  Google Scholar 

  40. Matsunari H, Watanabe M, Umeyama K et al (2012) Cloning of homozygous α1,3-galactosyltransferase gene knock-out pigs by somatic cell nuclear transfer. In: Miyagawa S (ed) Xenotransplantation. InTech, Croatia

    Google Scholar 

  41. Kikuchi K, Nagai T, Kashiwazaki N et al (1998) Cryopreservation and ensuing in vitro fertilization ability of boar spermatozoa from epididymides stored at 4 degrees C. Theriogenology 50:615–623

    Article  CAS  Google Scholar 

  42. Singh P, Schimenti JC, Bolcun-Filas E (2015) A mouse geneticist's practical guide to CRISPR applications. Genetics 199:1–15

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research (A) from the Japan Society for the Promotion of Science (No. 15H02480 to Hiroshi Nagashima), the Meiji University International Institute for Bio-Resource Research (MUIIBR to Hiroshi Nagashima), the Nakauchi Stem Cell and Organ Regeneration Project, the Exploratory Research for Advanced Technology (ERATO), the Japan Science and Technology Agency (JST), the Leading Advanced Projects for Medical Innovation (LEAP), and the Advanced Research and Development Programs for Medical Innovation (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Nagashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watanabe, M., Nagashima, H. (2023). Genome Editing of Pig. In: Hatada, I. (eds) Genome Editing in Animals. Methods in Molecular Biology, vol 2637. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3016-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3016-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3015-0

  • Online ISBN: 978-1-0716-3016-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics