Skip to main content

Retinal Ganglion Cell Axon Fractionation

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

  • 860 Accesses

Abstract

Retinal ganglion cell (RGC) axon regeneration in mammals can be stimulated through gene knockouts, pharmacological agents, and biophysical stimulation. Here we present a fractionation method to isolate regenerating RGC axons for downstream analysis using immunomagnetic separation of cholera toxin subunit B (CTB)-bound RGC axons. After optic nerve tissue dissection and dissociation, conjugated CTB is used to bind preferentially to regenerated RGC axons. Anti-CTB antibodies crosslinked to magnetic sepharose beads are used to isolate CTB-bound axons from a nonbound fraction of extracellular matrix and neuroglia. We provide a method of verifying fractionation by immunodetection of conjugated CTB and the RGC marker, Tuj1 (β-tubulin III). These fractions can be further analyzed with lipidomic methods, such as LC–MS/MS to gather fraction-specific enrichments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Park KK, Liu K, Hu Y et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903):963–966. https://doi.org/10.1126/science.1161566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trzeciecka A, Carmy T, Hackam AS et al (2019) Lipid profiling dataset of the Wnt3a-induced optic nerve regeneration. Data Brief 25:103966. https://doi.org/10.1016/j.dib.2019.103966

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trzeciecka A, Stark DT, Kwong JMK et al (2019) Comparative lipid profiling dataset of the inflammation-induced optic nerve regeneration. Data Brief 24:103950. https://doi.org/10.1016/j.dib.2019.103950

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arcuri J, Liu Y, Lee RK et al (2020) Lipid profile dataset of optogenetics induced optic nerve regeneration. Data Brief 31:106001. https://doi.org/10.1016/j.dib.2020.106001

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mesmin C, van Oostrum J, Domon B (2016) Complexity reduction of clinical samples for routine mass spectrometric analysis. Proteomics Clin Appl 10(4):315–322. https://doi.org/10.1002/prca.201500135

    Article  CAS  PubMed  Google Scholar 

  6. Picotti P, Aebersold R, Domon B (2007) The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics 6(9):1589–1598. https://doi.org/10.1074/mcp.M700029-MCP200

    Article  CAS  PubMed  Google Scholar 

  7. Hu C, Duan Q, Han X (2020) Strategies to improve/eliminate the limitations in shotgun lipidomics. Proteomics 20(11):e1900070. https://doi.org/10.1002/pmic.201900070

    Article  CAS  PubMed  Google Scholar 

  8. Smith PD, Sun F, Park KK et al (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64(5):617–623. https://doi.org/10.1016/j.neuron.2009.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Belin S, Nawabi H, Wang C et al (2015) Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 86(4):1000–1014. https://doi.org/10.1016/j.neuron.2015.03.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baldauf KJ, Royal JM, Hamorsky KT et al (2015) Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 7(3):974–996. https://doi.org/10.3390/toxins7030974

    Article  CAS  PubMed  Google Scholar 

  11. Benady A, Freidin D, Pick CG et al (2018) GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep 8(1):13340. https://doi.org/10.1038/s41598-018-31623-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Meehan, S.D., Bhattacharya, S. (2023). Retinal Ganglion Cell Axon Fractionation. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics