Skip to main content

Profiling Dynamic Changes in DNA Accessibility During Axon Regeneration After Optic Nerve Crush in Adult Zebrafish

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

Abstract

A time-course series utilizing assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) can be used to detect changes in accessibility of DNA regulatory elements such as promoters and enhancers over the course of regeneration. This chapter describes methods for preparing ATAC-seq libraries from isolated zebrafish retinal ganglion cells (RGCs) following optic nerve crush at selected post-injury time points. These methods have been used for identifying dynamic changes in DNA accessibility that govern successful optic nerve regeneration in zebrafish. This method may be adapted to identify changes in DNA accessibility that accompany other types of insults to RGCs or to identify changes that occur over the course of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109:21 29 21–21 29 29. https://doi.org/10.1002/0471142727.mb2129s109

    Article  Google Scholar 

  2. Dhara SP, Rau A, Flister MJ, Recka NM, Laiosa MD, Auer PL, Udvadia AJ (2019) Cellular reprogramming for successful CNS axon regeneration is driven by a temporally changing cast of transcription factors. Sci Rep 9(1):14198. https://doi.org/10.1038/s41598-019-50485-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Whitworth GB, Misaghi BC, Rosenthal DM, Mills EA, Heinen DJ, Watson AH, Ives CW, Ali SH, Bezold K, Marsh-Armstrong N, Watson FL (2017) Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Dev Biol 426(2):360–373. https://doi.org/10.1016/j.ydbio.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  4. Chandran V, Coppola G, Nawabi H, Omura T, Versano R, Huebner EA, Zhang A, Costigan M, Yekkirala A, Barrett L, Blesch A, Michaelevski I, Davis-Turak J, Gao F, Langfelder P, Horvath S, He Z, Benowitz L, Fainzilber M, Tuszynski M, Woolf CJ, Geschwind DH (2016) A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron 89(5):956–970. https://doi.org/10.1016/j.neuron.2016.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michaelevski I, Segal-Ruder Y, Rozenbaum M, Medzihradszky KF, Shalem O, Coppola G, Horn-Saban S, Ben-Yaakov K, Dagan SY, Rishal I, Geschwind DH, Pilpel Y, Burlingame AL, Fainzilber M (2010) Signaling to transcription networks in the neuronal retrograde injury response. Sci Signal 3(130):ra53. https://doi.org/10.1126/scisignal.2000952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frank CL, Liu F, Wijayatunge R, Song L, Biegler MT, Yang MG, Vockley CM, Safi A, Gersbach CA, Crawford GE, West AE (2015) Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci 18(5):647–656. https://doi.org/10.1038/nn.3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Velasco S, Ibrahim MM, Kakumanu A, Garipler G, Aydin B, Al-Sayegh MA, Hirsekorn A, Abdul-Rahman F, Satija R, Ohler U, Mahony S, Mazzoni EO (2017) A multi-step transcriptional and chromatin state cascade underlies motor neuron programming from embryonic stem cells. Cell Stem Cell 20(2):205–217 e208. https://doi.org/10.1016/j.stem.2016.11.006

    Article  CAS  PubMed  Google Scholar 

  8. Udvadia AJ (2008) 3.6 kb genomic sequence from Takifugu capable of promoting axon growth-associated gene expression in developing and regenerating zebrafish neurons. Gene Expr Patterns 8(6):382–388. https://doi.org/10.1016/j.gep.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ava J. Udvadia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhara, S.P., Udvadia, A.J. (2023). Profiling Dynamic Changes in DNA Accessibility During Axon Regeneration After Optic Nerve Crush in Adult Zebrafish. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics