Skip to main content

Translating Ribosome Affinity Purification (TRAP) and Bioinformatic RNA-Seq Analysis in Post-metamorphic Xenopus laevis

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

Abstract

Recent technical advances provide the ability to isolate and purify mRNAs from genetically distinct cell types so as to provide a broader view of gene expression as they relate to gene networks. These tools allow the genome of organisms undergoing different developmental or diseased states and environmental or behavioral conditions to be compared. Translating ribosome affinity purification (TRAP), a method using transgenic animals expressing a ribosomal affinity tag (ribotag) that targets ribosome-bound mRNAs, allows for the rapid isolation of genetically distinct populations of cells. In this chapter, we provide stepwise methods for carrying out an updated protocol for using the TRAP method in the South African clawed frog Xenopus laevis. A discussion of the experimental design and necessary controls and their rationale, along with a description of the bioinformatic steps involved in analyzing the Xenopus laevis translatome using TRAP and RNA-Seq, is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Emery B, Barres BA (2008) Unlocking CNS cell type heterogeneity. Cell 135:596–598

    Article  CAS  PubMed  Google Scholar 

  2. Okaty BW, Sugino K, Nelson SB (2011) Cell type-specific transcriptomics in the brain. J Neurosci 31:6939–6943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tebaldi T, Re A, Viero G, Pegoretti I, Passerini A, Blanzieri E et al (2012) Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells. BMC Genomics 13:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE et al (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heiman M, Kulicke R, Fenster RJ, Greengard P, Heintz N (2014) Cell type–specific mRNA purification by translating ribosome affinity purification (TRAP). Nat Protoc 9:1282–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dougherty JD (2017) The expanding toolkit of translating ribosome affinity purification. J Neurosci 37:12079–12087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Watson FL, Mills EA, Wang X, Guo C, Chen DF, Marsh-Armstrong N (2012) Cell type-specific translational profiling in the Xenopus laevis retina. Dev Dyn Off Publ Am Assoc Anat 241:1960–1972

    CAS  Google Scholar 

  8. Whitworth GB, Misaghi BC, Rosenthal DM, Mills EA, Heinen DJ, Watson AH et al (2017) Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. Dev Biol 426:360–373

    Article  CAS  PubMed  Google Scholar 

  9. Sive HL, Grainger R, Harland RM (2010) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. ISBN: 978-087969942-0

    Google Scholar 

  10. R Core Team (2015) R: a language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. Available from https://www.R-project.org/

  11. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J et al (2015) Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 43:D756–D763

    Article  CAS  PubMed  Google Scholar 

  14. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 12:323

    Article  CAS  Google Scholar 

  16. Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK et al (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One 9:e103207

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V et al (2016) How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA N Y N 22:839–851

    Article  CAS  Google Scholar 

  18. Li X, Brock GN, Rouchka EC, Cooper NGF, Wu D, O’Toole TE et al (2017) A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. PLOS ONE Public Library of Science 12:e0176185

    Article  Google Scholar 

  19. Osabe T, Shimizu K, Kadota K (2019) Accurate classification of differential expression patterns in a bayesian framework with robust normalization for multi-group RNA-Seq count data. Bioinforma Biol Insights [Internet] [cited 2021 Feb 22];13. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6614939/

  20. Li X, Cooper NGF, O’Toole TE, Rouchka EC (2020) Choice of library size normalization and statistical methods for differential gene expression analysis in balanced two-group comparisons for RNA-seq studies. BMC Genomics 21:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  22. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    Article  CAS  PubMed  Google Scholar 

  25. Feehan JM, Chiu CN, Stanar P, Tam BM, Ahmed SN, Moritz OL (2017) Modeling dominant and recessive forms of retinitis pigmentosa by editing three rhodopsin-encoding genes in Xenopus Laevis using Crispr/Cas9. Sci Rep 7:6920

    Article  PubMed  PubMed Central  Google Scholar 

  26. Batni S, Scalzetti L, Moody SA, Knox BE (1996) Characterization of the Xenopus rhodopsin gene. J Biol Chem 271:3179–3186

    Article  CAS  PubMed  Google Scholar 

  27. Pittman AJ, Law M-Y, Chien C-B (2008) Pathfinding in a large vertebrate axon tract: isotypic interactions guide retinotectal axons at multiple choice points. Dev Camb Engl 135:2865–2871

    CAS  Google Scholar 

  28. Burden DW (2008) Guide to the disruption of biological samples – 2012. Random Primer [Internet]. [Cited 2021 Mar 1]. Available from https://opsdiagnostics.com/applications/samplehomogenization/homogenizationguidepart1.html

  29. Thellmann M, Andersen TG, Vermeer JE (2020) Translating ribosome affinity purification (TRAP) to investigate Arabidopsis thaliana root development at a cell type-specific scale. JoVE J Vis Exp:e60919

    Google Scholar 

  30. Bertin B, Renaud Y, Aradhya R, Jagla K, Junion G (2015) TRAP-rc, translating ribosome affinity purification from rare cell populations of drosophila embryos. JoVE J Vis Exp 103:e52985

    Google Scholar 

  31. Moran P, Guo Y, Yuan R, Barnekow N, Palmer J, Beck A, et a (2019) Translating ribosome affinity purification (TRAP) for RNA isolation from endothelial cells in vivo. J Vis Exp 147 59624

    Google Scholar 

  32. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al (2012) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:bts635

    Google Scholar 

Download references

Acknowledgments

Many thanks to Nicholas Marsh-Armstrong and Lindsay Fague (University of California, Davis, CA) for their helpful edits and insight on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona L. Watson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Whitworth, G.B., Watson, F.L. (2023). Translating Ribosome Affinity Purification (TRAP) and Bioinformatic RNA-Seq Analysis in Post-metamorphic Xenopus laevis. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics