Skip to main content

Rapid Testing of Gene Function in Axonal Regeneration After Spinal Cord Injury Using Larval Zebrafish

  • Protocol
  • First Online:
Axon Regeneration

Abstract

Larval zebrafish show axonal regrowth over a complex spinal injury site and recovery of function within days after injury. Here we describe a simple protocol to disrupt gene function in this model using acute injections of highly active synthetic gRNAs to rapidly detect loss-of-function phenotypes without the need for breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker CG, Lieberoth BC, Morellini F, Feldner J, Becker T, Schachner M (2004) L1.1 is involved in spinal cord regeneration in adult zebrafish. J Neurosci 24(36):7837–7842. https://doi.org/10.1523/JNEUROSCI.2420-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377:577–595. https://doi.org/10.1002/(sici)1096-9861(19970127)377:4<577::aid-cne8>3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  3. van Raamsdonk W, Maslam S, de Jong DH, Smit-Onel MJ, Velzing E (1998) Long term effects of spinal cord transection in zebrafish: swimming performances, and metabolic properties of the neuromuscular system. Acta Histochem 100:117–131. https://doi.org/10.1016/S0065-1281(98)80021-4

    Article  PubMed  Google Scholar 

  4. Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM, Becker T, Becker CG (2017) Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun 8(1):126. https://doi.org/10.1038/s41467-017-00143-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tannenbaum J, Bennett BT (2015) Russell and Burch’s 3Rs then and now: the need for clarity in definition and purpose. J Am Assoc Lab Anim Sci 54(2):120–132

    PubMed  PubMed Central  Google Scholar 

  6. Keatinge M, Tsarouchas TM, Munir T, Porter NJ, Larraz J, Gianni D, Tsai HH, Becker CG, Lyons DA, Becker T (2021) CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genet 17(4):e1009515. https://doi.org/10.1371/journal.pgen.1009515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ (2019) Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish. Dev Cell 51(5):645–657.e644. https://doi.org/10.1016/j.devcel.2019.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klatt Shaw D, Mokalled MH (2021) Efficient CRISPR/Cas9 mutagenesis for neurobehavioral screening in adult zebrafish. G3 (Bethesda). https://doi.org/10.1093/g3journal/jkab089

  9. Kroll F, Powell GT, Ghosh M, Gestri G, Antinucci P, Hearn TJ, Tunbak H, Lim S, Dennis HW, Fernandez JM, Whitmore D, Dreosti E, Wilson SW, Hoffman EJ, Rihel J (2021) A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes. elife 10. https://doi.org/10.7554/eLife.59683

  10. Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133(5):916–927. https://doi.org/10.1016/j.cell.2008.04.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the EU Cofund ERANET NEURON consortium NEURONICHE with contributions from MRC (MR/R001049/1), Spinal Research, and Wings for Life to CGB, a project grant from the BBSRC (BB/R003742/1) to TB, by a Wellcome Trust Senior Research Fellowship (102836/Z/13/Z) to DAL and by Biogen who provided funding via a scientific research agreement with DAL. LKD was funded by a BBSRC Eastbio PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Drake, L.K., Keatinge, M., Tsarouchas, T.M., Becker, C.G., Lyons, D.A., Becker, T. (2023). Rapid Testing of Gene Function in Axonal Regeneration After Spinal Cord Injury Using Larval Zebrafish. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics