Skip to main content

A Reproducible Spinal Cord Crush Injury in the Regeneration-Permissive Axolotl

  • Protocol
  • First Online:
Axon Regeneration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2636))

  • 840 Accesses

Abstract

Following injury, axolotls are able to functionally regenerate their spinal cord, regaining both motor and sensory control. In contrast, humans respond to severe spinal cord injury by forming a glial scar, which prevents further damage but also inhibits any regenerative growth, resulting in loss of function caudal to the injury site. The axolotl has become a popular system to elucidate the underlying cellular and molecular events that contribute to successful CNS regeneration. However, the experimental injuries (tail amputation and transection) that are utilized in axolotls do not mimic the blunt trauma that is often sustained in humans. Here, we report a more clinically relevant model for spinal cord injuries in the axolotl using a weight-drop technique. This reproducible model allows precise control over the severity of the injury by regulating the drop height, weight, compression, and position of the injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018. https://doi.org/10.1038/nrdp.2017.18

    Article  PubMed  Google Scholar 

  2. Sabin KZ, Jiang P, Gearhart MD, Stewart R, Echeverri K (2019) AP-1(cFos/JunB)/miR-200a regulate the pro-regenerative glial cell response during axolotl spinal cord regeneration. Commun Biol 2:91. https://doi.org/10.1038/s42003-019-0335-4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noorimotlagh Z, Babaie M, Safdarian M, Ghadiri T, Rahimi-Movaghar V (2017) Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review. Iran J Basic Med Sci 20(12):1287

    PubMed  PubMed Central  Google Scholar 

  4. Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7(6):601–611. https://doi.org/10.1242/dmm.014837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hui SP, Dutta A, Ghosh S (2010) Cellular response after crush injury in adult zebrafish spinal cord. Dev Dyn 239(11):2962–2979. https://doi.org/10.1002/dvdy.22438

    Article  PubMed  Google Scholar 

  6. Hanslik KL, Allen SR, Harkenrider TL, Fogerson SM, Guadarrama E, Morgan JR (2019) Regenerative capacity in the lamprey spinal cord is not altered after a repeated transection. PLoS One 14(1):e0204193. https://doi.org/10.1371/journal.pone.0204193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Monaghan JR, Walker JA, Page RB, Putta S, Beachy CK, Voss SR (2007) Early gene expression during natural spinal cord regeneration in the salamander Ambystoma mexicanum. J Neurochem 101(1):27–40. https://doi.org/10.1111/j.1471-4159.2006.04344.x

    Article  CAS  PubMed  Google Scholar 

  8. Walker SE, Nottrodt R, Maddalena L, Carter C, Spencer GE, Carlone RL (2018) Retinoid X receptor α downregulation is required for tail and caudal spinal cord regeneration in the adult newt. Neural Regen Res 13(6):1036–1045. https://doi.org/10.4103/1673-5374.233447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Echeverri K, Tanaka EM (2003) Electroporation as a tool to study in vivo spinal cord regeneration. Dev Dyn 226(2):418–425. https://doi.org/10.1002/dvdy.10238

    Article  CAS  PubMed  Google Scholar 

  10. Deep A, Adeeb N, Hose N, Rezaei M, Fard SA, Tubbs RS, Yashar P, Liker MA, Kateb B, Mortazavi MM (2015) Mouse models of spinal cord injury and stem cell transplantation. Transl Res Anat 1:2–10. https://doi.org/10.1016/j.tria.2015.10.001

    Article  Google Scholar 

  11. Minakov AN, Chernov AS, Asutin DS, Konovalov NA, Telegin GB (2018) Experimental models of spinal cord injury in laboratory rats. Acta Nat 10(3):4–10

    Article  CAS  Google Scholar 

  12. Rodrigo Albors A, Tazaki A, Rost F, Nowoshilow S, Chara O, Tanaka EM (2015) Planar cell polarity-mediated induction of neural stem cell expansion during axolotl spinal cord regeneration. elife 4:e10230. https://doi.org/10.7554/eLife.10230

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rost F, Rodrigo Albors A, Mazurov V, Brusch L, Deutsch A, Tanaka EM, Chara O (2016) Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls. elife:5. https://doi.org/10.7554/eLife.20357

  14. Thygesen MM, Lauridsen H, Pedersen M, Orlowski D, Mikkelsen TW, Rasmussen MM (2019) A clinically relevant blunt spinal cord injury model in the regeneration competent axolotl (Ambystoma mexicanum) tail. Exp Ther Med 17(3):2322–2328. https://doi.org/10.3892/etm.2019.7193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Echeverri .

Editor information

Editors and Affiliations

1 Supplementary Electronic Material (S)

Tail touch assay in an uninjured animal. The axolotl is touched with a forceps and responds by swimming away from the stimulus (MP4 4395 kb)

Tail touch assay 2 days post-injury. A spinal cord injury has been performed in the midsection of the axolotl tail. The axolotl is repeatedly touched with a forceps caudal to the lesion site but fails to respond to the stimulus (MP4 2166 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Walker, S., Santos-Ferreira, T., Echeverri, K. (2023). A Reproducible Spinal Cord Crush Injury in the Regeneration-Permissive Axolotl. In: Udvadia, A.J., Antczak, J.B. (eds) Axon Regeneration. Methods in Molecular Biology, vol 2636. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3012-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3012-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3011-2

  • Online ISBN: 978-1-0716-3012-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics