Skip to main content

Integrating Multi-Omics Data to Construct Reliable Interconnected Models of Signaling, Gene Regulatory, and Metabolic Pathways

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Abstract

Alteration of the status of the metabolic enzymes could be a probable way to regulate metabolic reprogramming, which is a critical cellular adaptation mechanism especially for cancer cells. Coordination among biological pathways, such as gene-regulatory, signaling, and metabolic pathways is crucial for regulating metabolic adaptation. Also, incorporation of resident microbial metabolic potential in human body can influence the interplay between the microbiome and the systemic or tissue metabolic environments. Systemic framework for model-based integration of multi-omics data can ultimately improve our understanding of metabolic reprogramming at holistic level. However, the interconnectivity and novel meta-pathway regulatory mechanisms are relatively lesser explored and understood. Hence, we propose a computational protocol that utilizes multi-omics data to identify probable cross-pathway regulatory and protein-protein interaction (PPI) links connecting signaling proteins or transcription factors or miRNAs to metabolic enzymes and their metabolites using network analysis and mathematical modeling. These cross-pathway links were shown to play important roles in metabolic reprogramming in cancer scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Warburg O (1925) The metabolism of carcinoma cells. J Cancer Res 9:148–163

    Article  CAS  Google Scholar 

  2. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  4. Patrick S, Ward CBT (2013) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308

    Google Scholar 

  5. Ward CBT, Patrick S, Thompson CB (2012) Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol 4:a006783

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mo Y, Wang Y, Zhang L et al (2019) The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer 10:3789–3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papa S, Choy PM, Bubici C (2019) The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 38:2223–2240

    Article  CAS  PubMed  Google Scholar 

  8. Martin-Martin N, Carracedo A, Torrano V (2017) Metabolism and transcription in cancer: merging two classic tales. Front Cell Dev Bio 5:119

    Article  Google Scholar 

  9. Dong Y, Tu R, Liu H et al (2020) Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Sig Transduct Target Ther 5:124

    Article  Google Scholar 

  10. Machida K (2018) Pluripotency transcription factors and metabolic reprogramming of mitochondria in tumor-initiating stem-like cells. Antioxid Redox Signal 28:1080–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen B, Li H, Zeng X et al (2012) Roles of microRNA on cancer cell metabolism. J Transl Med 10:228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh PK, Mehla K, Hollingsworth MA et al (2011) Regulation of aerobic glycolysis by microRNAs in cancer. Mol Cell Pharmacol 3:125–134

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gopalakrishnan V, Helmink BA, Spencer CN et al (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Helmink BA, Khan MAW, Hermann A et al (2020) The microbiome, cancer, and cancer therapy. Nat Med 25:377–388

    Article  Google Scholar 

  18. Xavier JB, Young VB, Skufka J et al (2020) The cancer microbiome: distinguishing direct and indirect effects requires a systemic view. Trends Cancer 6:192–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11 : protein –protein association networks with increased coverage , supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  20. Kanehisa M, Sato Y, Kawashima M et al (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462

    Article  CAS  PubMed  Google Scholar 

  21. Fabregat A, Sidiropoulos K, Garapati P et al (2016) The Reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487

    Article  CAS  PubMed  Google Scholar 

  22. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  CAS  PubMed  Google Scholar 

  23. Fazekas D, Koltai M, Türei D et al (2013) SignaLink 2 – a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kandasamy K, Mohan SS, Raju et al (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bovolenta LA, Acencio ML, Lemke N (2012) HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC Genomics 13:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han H, Cho JW, Lee S et al (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res 46:D380–D386

    Article  CAS  PubMed  Google Scholar 

  27. Huang HY, Lin YCD, Li J et al (2020) miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res 48:D148–D154

    CAS  PubMed  Google Scholar 

  28. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S et al (2018) DIANA-TarBase v8:a decade-long collection of experimentally supported miRNA-gene interaction. Nucleic Acids Res 46:D239–D245

    Article  CAS  PubMed  Google Scholar 

  29. Mandloi S, Chakrabarti S (2015) PALM-IST: pathway assembly from literature mining--an information search tool. Sci Rep 5:10021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664

    Article  CAS  PubMed  Google Scholar 

  31. Shah PK, Jensen LJ, Boue S, Bork P (2005) Extraction of transcript diversity from scientific literature. PLoS Comput Biol 1(1):e10

    Article  Google Scholar 

  32. Horn F, Lau AL, Cohen FE (2004) Automated extraction of mutation data from the literature: application of MuteXt to G protein-coupled receptors and nuclear hormone receptors. Bioinformatics 20:557–568

    Article  CAS  PubMed  Google Scholar 

  33. Hu ZZ, Narayanaswamy M, Ravikumar KE, Vijay-Shanker K, Wu CH (2005) Literature mining and database annotation of protein phosphorylation using a rule-based system. Bioinformatics 21:2759–2765

    Article  CAS  PubMed  Google Scholar 

  34. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga

  35. Zhang J, Baran J, Cros A et al (2011) International Cancer Genome Consortium Data Portal-a one-stop shop for cancer genomics data. Database 2011:bar026

    Article  PubMed  PubMed Central  Google Scholar 

  36. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  37. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hardcastle TJ (2021) baySeq: Empirical Bayesian analysis of patterns of differential expression in count data. R package version 2.26.0

    Google Scholar 

  39. Leng N, Kendziorski C (2021) EBSeq: an R package for gene and isoform differential expression analysis of RNA-seq data. R package version 1.32.0

    Google Scholar 

  40. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41:D991–D995

    Article  CAS  PubMed  Google Scholar 

  41. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B 57:289–300

    Google Scholar 

  42. Huson DH, Auch AF, Qi J et al (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  46. Rognes T, Flouri T, Nichols B et al (2016) Vsearch: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  47. Albanese D, Fontana P, De Filippo C et al (2015) MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci Rep 5:1–7

    Article  Google Scholar 

  48. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a Chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  Google Scholar 

  52. Cole JR, Wang Q, Fish JA et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    Article  CAS  PubMed  Google Scholar 

  53. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Machine Learn Res 12:2825–2830

    Google Scholar 

  54. Robeson MS, O’Rourke DR, Kaehler BD et al (2021) RESCRIPt: reproducible sequence taxonomy reference database management for the masses. PLoS Comput Biol e1009581

    Google Scholar 

  55. Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1:e00013–e00015

    Article  PubMed  PubMed Central  Google Scholar 

  58. Larsen PE, Collart FR, Field D et al (2011) Predicted Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microb Inform Exp 1:1–11

    Article  Google Scholar 

  59. Bhattacharyya M, Chakrabarti S (2015) Identification of important interacting proteins (IIPs) in plasmodium falciparum using large-scale interaction network analysis and in-silico knock-out studies. Malar J 14:1–17

    Article  CAS  Google Scholar 

  60. Yu H, Kim PM, Sprecher E et al (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:713–720

    Article  CAS  Google Scholar 

  61. Hagberg A, Swart PS, Chult D (2008) Exploring network structure, dynamics, and function using networkx. N. p. Web, USA

    Google Scholar 

  62. Bag AK, Mandloi S, Jarmalavicius S et al (2019) Connecting signaling and metabolic pathways in EGF receptor-mediated oncogenesis of glioblastoma. PLoS Comput Biol 15:e1007090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kumar K, Bose S, Chakrabarti S (2021) Identification of cross-pathway connections via protein-protein interactions linked to altered states of metabolic enzymes in cervical cancer. Front Med 8:1949

    Article  Google Scholar 

  64. Biswas N, Kumar K, Bose S et al (2020) Analysis of Pan-Omics Data in Human Interactome Network (APODHIN). Front Genet 11:589231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Biswas N, Chakrabarti S (2020) Artificial Intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol 10:588221

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bose S, Kumar K, Chakrabarti S (2021) System biology and network analysis approaches on oxidative stress in cancer. In: Chakraborti S, Ray BK, Roychowdhury S (eds) Handbook of oxidative stress in cancer: mechanistic aspects. Springer, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandip Paul or Saikat Chakrabarti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, K. et al. (2023). Integrating Multi-Omics Data to Construct Reliable Interconnected Models of Signaling, Gene Regulatory, and Metabolic Pathways. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics