Skip to main content

Mathematically Modeling the Effect of Endocrine and Cdk4/6 Inhibitor Therapies on Breast Cancer Cells

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

  • 779 Accesses

Abstract

Mathematical modeling of cancer systems is beginning to be used to design better treatment regimens, especially in chemotherapy and radiotherapy. The effectiveness of mathematical modeling to inform treatment decisions and identify therapy protocols, some of which are highly nonintuitive, is because it enables the exploration of a huge number of therapeutic possibilities. Considering the immense cost of laboratory research and clinical trials, these nonintuitive therapy protocols would likely never be found by experimental approaches. While much of the work to date in this area has involved high-level models, which look simply at overall tumor growth or the interaction of resistant and sensitive cell types, mechanistic models that integrate molecular biology and pharmacology can contribute greatly to the discovery of better cancer treatment regimens. These mechanistic models are better able to account for the effect of drug interactions and the dynamics of therapy. The aim of this chapter is to demonstrate the use of ordinary differential equation-based mechanistic models to describe the dynamic interactions between the molecular signaling of breast cancer cells and two key clinical drugs. In particular, we illustrate the procedure for building a model of the response of MCF-7 cells to standard therapies used in the clinic. Such mathematical models can be used to explore the vast number of potential protocols to suggest better treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Citron ML, Berry DA, Cirrincione C, Hudis C, Winer EP, Gradishar WJ et al (2003) Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol Off J Am Soc Clin Oncol 21(8):1431–1439

    Article  CAS  Google Scholar 

  2. Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61(7):1307–1317

    CAS  PubMed  Google Scholar 

  3. Michor F, Beal K (2015) Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort. Cell 163(5):1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Cunningham JJ, Brown JS, Gatenby RA (2017) Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat Commun 8(1):1816

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lalonde RL, Kowalski KG, Hutmacher MM, Ewy W, Nichols DJ, Milligan PA et al (2007) Model-based drug development. Clin Pharmacol Ther 82(1):21–32

    Article  CAS  PubMed  Google Scholar 

  6. Visser SAG, De Alwis DP, Kerbusch T, Stone JA, Allerheiligen SRB (2014) Implementation of quantitative and systems pharmacology in large pharma. CPT Pharmacometrics Syst Pharmacol 3(10):1–10

    Article  Google Scholar 

  7. Darwich AS, Ogungbenro K, Vinks AA, Powell JR, Reny JL, Marsousi N et al (2017) Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future. Clin Pharmacol Ther 101(5):646–656

    Article  CAS  PubMed  Google Scholar 

  8. Kirouac DC (2016) Using systems pharmacology to advance oncology drug development. In: Mager D, Kimko H (eds) Systems pharmacology and pharmacodynamics, AAPS advances in the pharmaceutical sciences series, vol 23. Springer, Cham

    Chapter  Google Scholar 

  9. Hryniuk W (2001) Dosage parameters in chemotherapy of breast cancer. Breast Dis 14:21–30

    Article  CAS  PubMed  Google Scholar 

  10. Lake DE, Hudis CA (2004) High-dose chemotherapy in breast cancer. Drugs 64(17):1851–1860

    Article  CAS  PubMed  Google Scholar 

  11. He W, Demas DM, Conde IP, Shajahan-Haq AN, Baumann WT (2020) Mathematical modelling of breast cancer cells in response to endocrine therapy and Cdk4/6 inhibition. J R Soc Interface 17(169):20200339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shin SY, Müller AK, Verma N, Lev S, Nguyen LK (2018) Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer. PLoS Comput Biol 14(6):1–30

    Article  Google Scholar 

  13. Kirouac DC, Du JY, Lahdenranta J, Overland R, Yarar D, Paragas V et al (2013) Computational modeling of ERBB2-amplified breast cancer identifies combined ERBB2/3 blockade as superior to the combination of MEK and AKT Inhibitors. Sci Signal 6(288):ra68–ra68

    Article  PubMed  Google Scholar 

  14. Kirouac DC, Du J, Lahdenranta J, Onsum MD, Nielsen UB, Schoeberl B et al (2016) HER2+ cancer cell dependence on PI3K vs. MAPK signaling axes is determined by expression of EGFR, ERBB3 and CDKN1B. PLoS Comput Biol 12(4):e1004827

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kirouac DC, Schaefer G, Chan J, Merchant M, Orr C, Huang S-MA et al (2017) Clinical responses to ERK inhibition in BRAF(V600E)-mutant colorectal cancer predicted using a computational model. NPJ Syst Biol Appl 3:14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Spitale A, Mazzola P, Soldini D, Mazzucchelli L, Bordoni A (2009) Breast cancer classification according to immunohistochemical markers: Clinicopathologic features and short-term survival analysis in a population-based study from the South of Switzerland. Ann Oncol 20(4):628–635

    Article  CAS  PubMed  Google Scholar 

  17. Björnström L, Sjöberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833–842

    Article  PubMed  Google Scholar 

  18. Farzaneh S, Zarghi A (2016) Estrogen receptor ligands: a review (2013–2015). Sci Pharm 84(3):409–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonnell DP, Norris JD (2002) Connection and regulation of the human estrogen receptor. Science 296(5573):1642–1644

    Article  CAS  PubMed  Google Scholar 

  20. Vrtačnik P, Ostanek B, Mencej-Bedrač S, Marc J (2014) The many faces of estrogen signaling. Biochem Med 24(3):329–242

    Article  Google Scholar 

  21. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9(9):631–643

    Article  CAS  PubMed  Google Scholar 

  22. Chia YH, Ellis MJ, Ma CX (2010) Neoadjuvant endocrine therapy in primary breast cancer: indications and use as a research tool. Br J Cancer 103(6):759–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tremont A, Lu J, Cole JT (2017) Endocrine therapy for early breast cancer: updated review. Ochsner J 17:405–411

    PubMed  PubMed Central  Google Scholar 

  24. Ma CX, Reinert T, Chmielewska I, Ellis MJ (2015) Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer 15(5):261–275

    Article  CAS  PubMed  Google Scholar 

  25. Xi J, Ma CX (2020) Sequencing endocrine therapy for metastatic breast cancer: what do we do after disease progression on a CDK4/6 inhibitor? Curr Oncol Rep 22(6):57

    Article  CAS  PubMed  Google Scholar 

  26. Thürlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF et al (2005) A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 353(26):2747–2757

    Article  PubMed  Google Scholar 

  27. Prall OWJ, Rogan EM, Musgrove EA, Watts CKW, Sutherland RL (1998) c-Myc or cyclin D1 mimics estrogen effects on cyclin E-Cdk2 activation and cell cycle reentry. Mol Cell Biol 18(8):4499–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bretones G, Delgado MD, León J (2015) Myc and cell cycle control. Biochim Biophys Acta – Gene Regul Mech 1849(5):506–516

    Article  CAS  Google Scholar 

  29. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL (2011) Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 11(8):558–572

    Article  CAS  PubMed  Google Scholar 

  30. Sherr CJ (1995) D-type cyclins. Trends Biochem Sci 20(5):187–190

    Article  CAS  PubMed  Google Scholar 

  31. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    Article  CAS  PubMed  Google Scholar 

  32. Álvaro-Blanco J, Martínez-Gac L, Calonge E, Rodríguez-Martínez M, Molina-Privado I, Redondo JM et al (2009) A novel factor distinct from E2F mediates C-MYC promoter activation through its E2F element during exit from quiescence. Carcinogenesis 30(3):440–448

    Article  PubMed  Google Scholar 

  33. Yao G, Tan C, West M, Nevins JR, You L (2011) Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 7(485):1–10

    Google Scholar 

  34. Leng X, Noble M, Adams PD, Qin J, Harper JW (2002) Reversal of growth suppression by p107 via direct phosphorylation by cyclinD1/cyclin-dependent kinase 4. Mol Cell Biol 22(7):2242–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tedesco D, Lukas J, Reed SI (2002) The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCF(Skp2). Genes Dev 16(22):2946–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Morris L, Allen KE, La Thangue NB (2002) Regulation of E2F transcription by cyclinE-Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol 2(4):232–239

    Article  Google Scholar 

  37. Stevens C, La Thangue NB (2003) E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412(2):157–169

    Article  CAS  PubMed  Google Scholar 

  38. Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336–346

    Article  CAS  PubMed  Google Scholar 

  39. Nagaraja S, Wallqvist A, Reifman J, Mitrophanov AY (2014) Computational approach to characterize causative factors and molecular indicators of chronic wound inflammation. J Immunol 192(4):1824–1834

    Article  CAS  PubMed  Google Scholar 

  40. Wijayaratne AL, McDonnell DP (2001) The human estrogen receptor-α is a ubiquitinated protein whose stability is affected differentially by agonists, antagonists, and selective estrogen receptor modulators. J Biol Chem 276(38):35684–35692

    Article  CAS  PubMed  Google Scholar 

  41. Riggins RB, Bouton AH, Liu MC, Clarke R (2005) Antiestrogens, aromatase inhibitors, and apoptosis in breast cancer. Vitam Horm 71:201–237

    Article  CAS  PubMed  Google Scholar 

  42. Doisneau-Sixou SF, Sergio CM, Carroll JS, Hui R, Musgrove EA, Sutherland RL (2003) Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr Relat Cancer 10(2):179–186

    Article  CAS  PubMed  Google Scholar 

  43. Cam H, Dynlacht BD (2003) Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell 3(4):311–316

    Article  CAS  PubMed  Google Scholar 

  44. MacDonald JI, Dick FA (2013) Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 3(11–12):619–633

    Google Scholar 

  45. Lents NH, Gorges LL, Baldassare JJ (2006) Reverse mutational analysis reveals threonine-373 as a potentially sufficient phosphorylation site for inactivation of the retinoblastoma tumor suppressor protein (pRB). Cell Cycle 5(15):1699–1707

    Article  CAS  PubMed  Google Scholar 

  46. Chung M, Liu C, Yang HW, Köberlin MS, Cappell SD, Meyer T (2019) Transient hysteresis in CDK4/6 activity underlies passage of the restriction point in G1. Mol Cell 76(4):562–573.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ (1994) Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene 9(12):3635–3645

    CAS  PubMed  Google Scholar 

  48. Marra A, Curigliano G (2019) Are all cyclin-dependent kinases 4/6 inhibitors created equal? npj Breast Cancer 5(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hafner M, Mills CE, Subramanian K, Chen C, Chung M, Boswell SA et al (2018) Multiomics profiling establishes the polypharmacology of FDA-approved CDK4/6 inhibitors and the potential for differential clinical activity. Cell Chemical Biology 26(8):1067–1080.e8

    Article  Google Scholar 

  50. Carroll JS, Prall OWJ, Musgrove EA, Sutherland RL (2000) A pure estrogen antagonist inhibits cyclin E-cdk2 activity in MCF-7 breast cancer cells and induces accumulation of p130-E2F4 complexes characteristic of quiescence. J Biol Chem 275(49):38221–38229

    Article  CAS  PubMed  Google Scholar 

  51. Lewis JS, Osipo C, Meeke K, Jordan VC (2005) Estrogen-induced apoptosis in a breast cancer model resistant to long-term estrogen withdrawal. J Steroid Biochem Mol Biol 94(1–3):131–141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Public Health Service grant R01-CA201092 to W.T.B and A.N.S.-H. Technical services were provided by shared resources at Georgetown University Medical Center, including the Tissue Culture Core Shared Resource, that were funded through Public Health Service award 1P30-CA-51008 (Lombardi Comprehensive Cancer Center Support Grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

He, W., Shajahan-Haq, A.N., Baumann, W.T. (2023). Mathematically Modeling the Effect of Endocrine and Cdk4/6 Inhibitor Therapies on Breast Cancer Cells. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics