Skip to main content

Computational Random Mutagenesis to Investigate RAS Mutant Signaling

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

  • 690 Accesses

Abstract

This chapter describes how mathematical models can be used to investigate the possible range of behaviors for mutant forms of a protein. A mathematical model of the RAS signaling network that has previously been developed and applied to specific RAS mutants will be adapted for the process of computational random mutagenesis. By using this model to computationally investigate the range of RAS signaling outputs that would be anticipated over a wide range of the relevant parameter space, one can gain intuition about the types of behaviors that would be demonstrated by biological RAS mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites EC (2021) Cancer gene mutation frequencies for the U.S. population. Nat Commun 12(1):5961. https://doi.org/10.1038/s41467-021-26213-y

    Article  CAS  Google Scholar 

  2. Moore AR, Rosenberg SC, McCormick F, Malek S (2020) RAS-targeted therapies: is the undruggable drugged? Nat Rev Drug Discov 19(8):533–552. https://doi.org/10.1038/s41573-020-0068-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Westcott PM, Halliwill KD, To MD, Rashid M, Rust AG, Keane TM, Delrosario R, Jen KY, Gurley KE, Kemp CJ, Fredlund E, Quigley DA, Adams DJ, Balmain A (2015) The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517(7535):489–492. https://doi.org/10.1038/nature13898

    Article  CAS  PubMed  Google Scholar 

  4. Pershing NL, Lampson BL, Belsky JA, Kaltenbrun E, MacAlpine DM, Counter CM (2015) Rare codons capacitate Kras-driven de novo tumorigenesis. J Clin Invest 125(1):222–233. https://doi.org/10.1172/JCI77627

    Article  PubMed  Google Scholar 

  5. Krengel U, Schlichting I, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62(3):539–548. https://doi.org/10.1016/0092-8674(90)90018-a

    Article  CAS  PubMed  Google Scholar 

  6. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD (2015) Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res 13(9):1325–1335. https://doi.org/10.1158/1541-7786.MCR-15-0203

    Article  CAS  PubMed  Google Scholar 

  7. Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR (2011) Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Hum Mutat 32(1):33–43. https://doi.org/10.1002/humu.21377

    Article  CAS  PubMed  Google Scholar 

  8. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, Van Cutsem E, O'Callaghan CJ, Khambata-Ford S, Zalcberg JR, Simes J, Karapetis CS, Bardelli A, Tejpar S (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16):1812–1820. https://doi.org/10.1001/jama.2010.1535

    Article  PubMed  Google Scholar 

  9. Hood FE, Klinger B, Newlaczyl AU, Sieber A, Dorel M, Oliver SP, Coulson JM, Bluthgen N, Prior IA (2019) Isoform-specific Ras signaling is growth factor dependent. Mol Biol Cell 30(9):1108–1117. https://doi.org/10.1091/mbc.E18-10-0676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mageean CJ, Griffiths JR, Smith DL, Clague MJ, Prior IA (2015) Absolute quantification of endogenous Ras isoform abundance. PLoS One 10(11):e0142674. https://doi.org/10.1371/journal.pone.0142674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McFall T, Diedrich JK, Mengistu M, Littlechild SL, Paskvan KV, Sisk-Hackworth L, Moresco JJ, Shaw AS, Stites EC (2019) A systems mechanism for KRAS mutant allele-specific responses to targeted therapy. Sci Signal 12(600). https://doi.org/10.1126/scisignal.aaw8288

  12. McFall T, Stites EC (2021) Identification of RAS mutant biomarkers for EGFR inhibitor sensitivity using a systems biochemical approach. Cell Rep 37(11):110096. https://doi.org/10.1016/j.celrep.2021.110096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bandaru P, Shah NH, Bhattacharyya M, Barton JP, Kondo Y, Cofsky JC, Gee CL, Chakraborty AK, Kortemme T, Ranganathan R, Kuriyan J (2017) Deconstruction of the Ras switching cycle through saturation mutagenesis. elife 6. https://doi.org/10.7554/eLife.27810

  14. Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, Nguyen L, Dionne D, Diaz C, Bauman J, Mosaad MM, Fagre C, Lo A, McSharry M, Giacomelli AO, Ly SH, Rozenblatt-Rosen O, Hahn WC, Aguirre AJ, Berger AH, Regev A, Boehm JS (2022) Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nat Biotechnol. https://doi.org/10.1038/s41587-021-01160-7

  15. Zafra MP, Parsons MJ, Kim J, Alonso-Curbelo D, Goswami S, Schatoff EM, Han T, Katti A, Fernandez MTC, Wilkinson JE, Piskounova E, Dow LE (2020) An in vivo Kras Allelic series reveals distinct phenotypes of common oncogenic variants. Cancer Discov 10(11):1654–1671. https://doi.org/10.1158/2159-8290.CD-20-0442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE, Clark KS, Fu K, Martin BL, Jeck WR, Souroullas GP, Darr DB, Zedek DC, Miley MJ, Baguley BC, Campbell SL, Sharpless NE (2014) Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Discov 4(12):1418–1429. https://doi.org/10.1158/2159-8290.CD-14-0729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stites EC, Trampont PC, Ma Z, Ravichandran KS (2007) Network analysis of oncogenic Ras activation in cancer. Science 318(5849):463–467. https://doi.org/10.1126/science.1144642

    Article  CAS  PubMed  Google Scholar 

  18. Stites EC, Ravichandran KS (2012) Mathematical investigation of how oncogenic ras mutants promote ras signaling. Methods Mol Biol 880:69–85. https://doi.org/10.1007/978-1-61779-833-7_5

    Article  CAS  PubMed  Google Scholar 

  19. Stites EC (2021) Mathematical modeling to study KRAS mutant-specific responses to pathway inhibition. Methods Mol Biol 2262:311–321. https://doi.org/10.1007/978-1-0716-1190-6_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stites EC, Trampont PC, Haney LB, Walk SF, Ravichandran KS (2015) Cooperation between noncanonical Ras network mutations. Cell Rep 10(3):307–316. https://doi.org/10.1016/j.celrep.2014.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stites EC (2014) Differences in sensitivity to EGFR inhibitors could be explained by described biochemical differences between oncogenic Ras mutants. bioRxiv. https://doi.org/10.1101/005397

  22. Stites EC, Shaw AS (2018) Quantitative systems pharmacology analysis of KRAS G12C covalent inhibitors. CPT Pharmacometrics Syst Pharmacol 7(5):342–351. https://doi.org/10.1002/psp4.12291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Donovan S, Shannon KM, Bollag G (2002) GTPase activating proteins: critical regulators of intracellular signaling. Biochim Biophys Acta 1602(1):23–45

    CAS  PubMed  Google Scholar 

  24. Markevich NI, Moehren G, Demin OV, Kiyatkin A, Hoek JB, Kholodenko BN (2004) Signal processing at the Ras circuit: what shapes Ras activation patterns? Syst Biol (Stevenage) 1(1):104–113

    Article  CAS  PubMed  Google Scholar 

  25. Kiel C, Serrano L (2014) Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Mol Syst Biol 10:727. https://doi.org/10.1002/msb.20145092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolf J, Dronov S, Tobin F, Goryanin I (2007) The impact of the regulatory design on the response of epidermal growth factor receptor-mediated signal transduction towards oncogenic mutations. FEBS J 274(21):5505–5517. https://doi.org/10.1111/j.1742-4658.2007.06066.x

    Article  CAS  PubMed  Google Scholar 

  27. Wey M, Lee J, Jeong SS, Kim J, Heo J (2013) Kinetic mechanisms of mutation-dependent Harvey Ras activation and their relevance for the development of Costello syndrome. Biochemistry 52(47):8465–8479. https://doi.org/10.1021/bi400679q

    Article  CAS  PubMed  Google Scholar 

  28. Stites EC, Ravichandran KS (2012) Mechanistic modeling to investigate signaling by oncogenic Ras mutants. Wiley Interdiscip Rev Syst Biol Med 4(1):117–127. https://doi.org/10.1002/wsbm.156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant DP2 AT011327 and DoD grant W81XWH-20-10538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Stites .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Stites, E.C. (2023). Computational Random Mutagenesis to Investigate RAS Mutant Signaling. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics