Skip to main content

Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

Abstract

The development of optogenetic control over signaling pathways has provided a unique opportunity to decode the role of signaling dynamics in cell fate programing. Here I present a protocol for decoding cell fates through systematic interrogation with optogenetics and visualization of signaling with live biosensors. Specifically, this is written for Erk control of cell fates using the optoSOS system in mammalian cells or Drosophila embryos, though it is intended to be adapted to apply generally for several optogenetic tools, pathways, and model systems. This guide focuses on calibrating these tools, tricks of their use, and using them to interrogate features which program cell fates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson HE, Goyal Y, Pannucci NL et al (2017) The spatiotemporal limits of developmental Erk signaling. Dev Cell 40:185–192. https://doi.org/10.1016/j.devcel.2016.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goglia AG, Wilson MZ, Jena SG et al (2020) A live-cell screen for altered Erk dynamics reveals principles of proliferative control. Cell 10:240–253.e6. https://doi.org/10.1016/j.cels.2020.02.005

    Article  CAS  Google Scholar 

  3. Johnson HE, Toettcher JE (2019) Signaling dynamics control cell fate in the early Drosophila embryo. Dev Cell 48:361–370.e3. https://doi.org/10.1016/j.devcel.2019.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guntas G, Hallett RA, Zimmerman SP et al (2015) Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc Natl Acad Sci U S A 112:112–117. https://doi.org/10.1073/pnas.1417910112

    Article  CAS  PubMed  Google Scholar 

  5. Toettcher JE, Weiner OD, Lim WA (2013) Using Optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155:1422–1434. https://doi.org/10.1016/j.cell.2013.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Regot S, Hughey JJ, Bajar BT et al (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:1724–1734. https://doi.org/10.1016/j.cell.2014.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kudo T, Jeknić S, Macklin DN et al (2018) Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc 13:155–169. https://doi.org/10.1038/nprot.2017.128

    Article  CAS  PubMed  Google Scholar 

  8. Dine E, Gil AA, Uribe G et al (2018) Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst 6:655–663.e5. https://doi.org/10.1016/j.cels.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moreno E, Valon L, Levillayer F, Levayer R (2019) Competition for space induces cell elimination through compaction-driven ERK downregulation. Curr Biol 29:23–34.e8. https://doi.org/10.1016/j.cub.2018.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bugaj LJ, Lim WA (2019) High-throughput multicolor optogenetics in microwell plates. Nat Protoc 14:2205–2228. https://doi.org/10.1038/s41596-019-0178-y

    Article  CAS  PubMed  Google Scholar 

  11. Johnson HE, Toettcher JE (2018) Illuminating developmental biology with cellular optogenetics. Curr Opin Biotechnol 52:42–48. https://doi.org/10.1016/j.copbio.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goglia AG, Toettcher JE (2019) A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr Opin Chem Biol 48:106–113. https://doi.org/10.1016/j.cbpa.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  13. Krueger D, Izquierdo E, Viswanathan R et al (2019) Principles and applications of optogenetics in developmental biology. Development 146. https://doi.org/10.1242/dev.175067

  14. Repina NA, Rosenbloom A, Mukherjee A et al (2017) At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Ann Rev Chem Biomol Eng 8:13–39. https://doi.org/10.1146/annurev-chembioeng-060816-101254

    Article  Google Scholar 

  15. Tischer D, Weiner OD (2014) Illuminating cell signalling with optogenetic tools. Nat Rev Mol Cell Biol 15:551–558. https://doi.org/10.1038/nrm3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson MZ, Ravindran PT, Lim WA, Toettcher JE (2017) Tracing information flow from Erk to target gene induction reveals mechanisms of dynamic and combinatorial control. Mol Cell 67:757–769.e5. https://doi.org/10.1016/j.molcel.2017.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pichon X, Lagha M, Mueller F, Bertrand E (2018) A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol Cell 71:468–480. https://doi.org/10.1016/j.molcel.2018.07.022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath E. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnson, H.E. (2023). Application of Optogenetics to Probe the Signaling Dynamics of Cell Fate Decision-Making. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics