Skip to main content

Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response

  • Protocol
  • First Online:
Computational Modeling of Signaling Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2634))

Abstract

Paracrine signaling is a fundamental process regulating tissue development, repair, and pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively measuring paracrine signaling dynamics, and resultant gene expression changes, in living cells using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss considerations for selecting paracrine “sender-receiver” cell pairs, appropriate reporters, the use of this system to ask diverse experimental questions and screen drugs blocking intracellular communication, data collection, and the use of computational approaches to model and interpret these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davies AE, Albeck JG (2018) Microenvironmental signals and biochemical information processing: cooperative determinants of intratumoral plasticity and heterogeneity. Front Cell Dev Biol 6:44

    Article  PubMed  PubMed Central  Google Scholar 

  2. de la Cova C et al (2017) A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell 42(5):542–553 e4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hamilton WB et al (2019) Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature 575(7782):355–360

    Article  CAS  PubMed  Google Scholar 

  4. Kenny PA, Bissell MJ (2007) Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest 117(2):337–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davies AE et al (2020) Systems-level properties of EGFR-RAS-ERK Signaling amplify local signals to generate dynamic gene expression heterogeneity. Cell Syst 11(2):161–175 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Inman JL et al (2015) Mammary gland development: cell fate specification, stem cells and the microenvironment. Development 142(6):1028–1042

    Article  CAS  PubMed  Google Scholar 

  7. Matos I et al (2020) Progenitors oppositely polarize WNT activators and inhibitors to orchestrate tissue development. elife 9:e54304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang H et al (2017) Epithelial-mesenchymal micro-niches govern stem cell lineage choices. Cell 169(3):483–496 e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luetteke NC et al (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126(12):2739–2750

    Article  CAS  PubMed  Google Scholar 

  10. Wiesen JF et al (1999) Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126(2):335–344

    Article  CAS  PubMed  Google Scholar 

  11. Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci U S A 104(13):5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meier DR et al (2020) Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice. Breast Cancer Res Treat 179(3):653–660

    Article  CAS  PubMed  Google Scholar 

  13. Mao SPH et al (2018) Loss of amphiregulin reduces myoepithelial cell coverage of mammary ducts and alters breast tumor growth. Breast Cancer Res 20(1):131

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sparta B et al (2015) Receptor level mechanisms are required for Epidermal Growth Factor (EGF)-stimulated Extracellular Signal-regulated Kinase (ERK) activity pulses. J Biol Chem 290(41):24784–24792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertolin G et al (2019) Optimized FRET pairs and quantification approaches to detect the activation of Aurora Kinase A at mitosis. ACS Sens 4(8):2018–2027

    Article  CAS  PubMed  Google Scholar 

  16. Regot S et al (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157(7):1724–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pargett M, Albeck JG (2018) Live-cell imaging and analysis with multiple genetically encoded reporters. Curr Protoc Cell Biol 78(1):4 36 1–4 36 19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pargett M et al (2017) Single-cell imaging of ERK signaling using fluorescent biosensors. Methods Mol Biol 1636:35–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kudo T et al (2018) Live-cell measurements of kinase activity in single cells using translocation reporters. Nat Protoc 13(1):155–169

    Article  CAS  PubMed  Google Scholar 

  20. Gillies TE et al (2017) Linear integration of ERK activity predominates over persistence detection in Fra-1 regulation. Cell Syst 5(6):549–563 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rizki A et al (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68(5):1378–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weaver VM et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137(1):231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Briand P, Petersen OW, Van Deurs B (1987) A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Dev Biol 23(3):181–188

    Article  CAS  PubMed  Google Scholar 

  24. Stewart-Ornstein J, Lahav G (2016) Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit. Cell Rep 14(7):1800–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koch B et al (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR–Cas9 genome editing. Nat Protoc 13(6):1465–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bottcher R et al (2014) Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res 42(11):e89

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chiang T-WW et al (2016) CRISPR-Cas9D10A nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep 6(1):24356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joung J et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12(4):828–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kime C et al (2016) Efficient CRISPR/Cas9-based genome engineering in human pluripotent stem cells. Curr Protoc Hum Genet 88:21.4.1–21.4.23

    PubMed  PubMed Central  Google Scholar 

  30. Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369

    Article  CAS  PubMed  Google Scholar 

  31. van Rosmalen M, Krom M, Merkx M (2017) Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry 56(50):6565–6574

    Article  PubMed  Google Scholar 

  32. Maryu G, Matsuda M, Aoki K (2016) Multiplexed fluorescence imaging of ERK and Akt activities and cell-cycle progression. Cell Struct Funct 41:16007

    Article  Google Scholar 

  33. Dessauges C, Pertz O (2017) Developmental ERK Signaling goes digital. Dev Cell 42(5):443–444

    Article  CAS  PubMed  Google Scholar 

  34. Linkert M et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189(5):777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palmer E, Freeman T (2004) Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies using reverse transfection microarrays. Comp Funct Genom 5(4):342–353

    Article  CAS  Google Scholar 

  36. Manolaridis I et al (2013) Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature 504(7479):301–305

    Article  CAS  PubMed  Google Scholar 

  37. Srivastava M et al (2012) An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell 151(7):1474–1487

    Article  CAS  PubMed  Google Scholar 

  38. Nambiar TS et al (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat Commun 10(1):3395

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gillies TE et al (2020) Oncogenic mutant RAS signaling activity is rescaled by the ERK/MAPK pathway. Mol Syst Biol 16(10):e9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

These methods were developed in part by support from the Office of Research Infrastructure Programs of the National Institutes of Health under award number K01OD031811-01 and The Ohio State University Comprehensive Cancer Center and National Institutes of Health under grant number P30 CA016058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pargett, M., Ram, A.R., Murthy, V., Davies, A.E. (2023). Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response. In: Nguyen, L.K. (eds) Computational Modeling of Signaling Networks. Methods in Molecular Biology, vol 2634. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3008-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3008-2_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3007-5

  • Online ISBN: 978-1-0716-3008-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics