Skip to main content

Gene Editing in Mouse Zygotes Using the CRISPR/Cas9 System

  • Protocol
  • First Online:
Transgenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2631))

  • 1707 Accesses

Abstract

Engineering of the mouse germline is a key technology in biomedical research for studying the function of genes in health and disease. Since the first knockout mouse was described in 1989, gene targeting was based on recombination of vector encoded sequences in mouse embryonic stem cell lines and their introduction into preimplantation embryos to obtain germline chimeric mice. This approach has been replaced in 2013 by the application of the RNA-guided CRISPR/Cas9 nuclease system, which is introduced into zygotes and directly creates targeted modifications in the mouse genome. Upon the introduction of Cas9 nuclease and guide RNAs into one-cell embryos, sequence-specific double-strand breaks are created that are highly recombinogenic and processed by DNA repair enzymes. Gene editing commonly refers to the diversity of DSB repair products that include imprecise deletions or precise sequence modifications copied from repair template molecules. Since gene editing can now be easily applied directly in mouse zygotes, it has rapidly become the standard procedure for generating genetically engineered mice. This article covers the design of guide RNAs, knockout and knockin alleles, options for donor delivery, preparation of reagents, microinjection or electroporation of zygotes, and the genotyping of pups derived from gene editing projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang H, Wang H, Shivalila CS et al (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kühn R (2021) Genome engineering in rodents – status quo and perspectives. Lab Anim 56:83–87

    PubMed  Google Scholar 

  6. Tröder SE, Zevnik B (2021) History of genome editing: from meganucleases to CRISPR. Lab Anim 56:60–68

    PubMed  Google Scholar 

  7. Qin W, Dion SL, Kutny PM et al (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200:423–430

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen S, Lee B, Lee AY-F et al (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yao X, Zhang M, Wang X et al (2018) Tild-CRISPR allows for efficient and precise gene Knockin in mouse and human cells. Dev Cell 45:526–536

    CAS  PubMed  Google Scholar 

  12. Yao X, Wang X, Hu X et al (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 27:801–814

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Quadros RM, Miura H, Harms DW et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92

    PubMed  PubMed Central  Google Scholar 

  14. Codner GF, Mianné J, Caulder A et al (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70

    PubMed  PubMed Central  Google Scholar 

  15. Lanza DG, Gaspero A, Lorenzo I et al (2018) Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biol 16:69

    PubMed  PubMed Central  Google Scholar 

  16. Yoon Y, Wang D, Tai PWL et al (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:412

    PubMed  PubMed Central  Google Scholar 

  17. Chen S, Sun S, Moonen D et al (2019) CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep 27:3780–3789

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mizuno N, Mizutani E, Sato H et al (2018) Intra-embryo gene cassette Knockin by CRISPR/Cas9-mediated genome editing with adeno-associated viral vector. iScience 9:286–297

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin X, Pelletier S, Gingras S et al (2016) CRISPR-Cas9-mediated modification of the NOD mouse genome with Ptpn22R619W mutation increases autoimmune diabetes. Diabetes 65:2134–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tirado-Gonzalez I, Czlonka E, Nevmerzhitskaya A et al (2018) CRISPR/Cas9-edited NSG mice as PDX models of human leukemia to address the role of niche-derived SPARC. Leukemia 32:1049–1052

    CAS  PubMed  Google Scholar 

  21. Boroviak K, Doe B, Banerjee R et al (2016) Chromosome engineering in zygotes with CRISPR/Cas9. Genesis 54:78–85

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Birling M-C, Schaeffer L, André P et al (2017) Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE. Sci Rep 7:43331

    PubMed  PubMed Central  Google Scholar 

  23. Fujii W, Kakuta S, Yoshioka S et al (2016) Zygote-mediated generation of genome-modified mice using Streptococcus thermophilus 1-derived CRISPR/Cas system. Biochem Biophys Res Commun 477:473–476

    CAS  PubMed  Google Scholar 

  24. Kim Y, Cheong S-A, Lee JG et al (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34:808–810

    CAS  PubMed  Google Scholar 

  25. Zhang X, Liang P, Ding C et al (2016) Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep 6:32565

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hur JK, Kim K, Been KW et al (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34:807–808

    CAS  PubMed  Google Scholar 

  27. Kim K, Ryu S-M, Kim S-T et al (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol 35:435–437

    CAS  PubMed  Google Scholar 

  28. Zuo E, Sun Y, Wei W et al (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee HK, Smith HE, Liu C et al (2020) Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos. Commun Biol 3:19

    PubMed  PubMed Central  Google Scholar 

  30. Caso F, Davies B (2021) Base editing and prime editing in laboratory animals. Lab Anim 56:35–49

    PubMed  PubMed Central  Google Scholar 

  31. Liu Y, Li X, He S et al (2020) Efficient generation of mouse models with the prime editing system. Cell Discov 6:27

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen MW, Arbab M, Hsu JY et al (2018) Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646–651

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen F, Crepaldi L, Alsinet C et al (2018) Predicting the mutations generated by repair of Cas9-induced double-strand breaks. Nat Biotechnol 10:1038

    Google Scholar 

  34. Suzuki K, Tsunekawa Y, Hernandez-Benitez R et al (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Danner E, Lebedin M, de la Rosa K, Kühn R (2021) A homology independent sequence replacement strategy in human cells using a CRISPR nuclease. Open Biol 11:200283

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chu VT, Weber T, Graf R et al (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4

    PubMed  PubMed Central  Google Scholar 

  37. Low BE, Hosur V, Lesbirel S, Wiles MV (2022) Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase. Sci Reports 12:5424

    CAS  Google Scholar 

  38. Gurumurthy CB, O’Brien AR, Quadros RM et al (2019) Reproducibility of CRISPR-Cas9 methods for generation of conditional mouse alleles: a multi-center evaluation. Genome Biol 20:171

    PubMed  PubMed Central  Google Scholar 

  39. Haeussler M, Schönig K, Eckert H et al (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    PubMed  PubMed Central  Google Scholar 

  40. Dong Y, Li H, Zhao L et al (2019) Genome-wide off-target analysis in CRISPR-Cas9 modified mice and their offspring. G3 (Bethesda) 9:3645–3651

    CAS  PubMed  Google Scholar 

  41. Iyer V, Shen B, Zhang W et al (2015) Off-target mutations are rare in Cas9-modified mice. Nat Methods 12:479

    CAS  PubMed  Google Scholar 

  42. Anderson KR, Haeussler M, Watanabe C et al (2018) CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods 15:512–514

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Richardson CD, Kazane KR, Feng SJ et al (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat Genet 50:1132–1139

    CAS  PubMed  Google Scholar 

  44. Richardson CD, Ray GJ, DeWitt MA et al (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol 34:339–344

    CAS  PubMed  Google Scholar 

  45. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 13:195–215

    CAS  PubMed  Google Scholar 

  46. Minev D, Guerra R, Kishi JY et al (2019) Rapid in vitro production of single-stranded DNA. Nucleic Acids Res 47:11956–11962

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hao M, Huang H, Hu Y, Qi H (2020) Construction of a system for single-stranded DNA isolation. Biotechnol Lett 42:1663–1671

    PubMed  Google Scholar 

  48. Liang C, Li D, Zhang G et al (2015) Comparison of the methods for generating single-stranded DNA in SELEX. Analyst 140:3439–3444

    CAS  PubMed  Google Scholar 

  49. Takeo T, Nakagata N (2015) Superovulation using the combined administration of inhibin antiserum and equine chorionic gonadotropin increases the number of ovulated oocytes in C57BL/6 female mice. PLoS One 10:e0128330

    PubMed  PubMed Central  Google Scholar 

  50. Beermann F, Hummler E, Schmid E, Schütz G (1993) Perinatal activation of a tyrosine aminotransferase fusion gene does not occur in albino lethal mice. Mech Dev 42:59–65

    CAS  PubMed  Google Scholar 

  51. Brinkman EK, Kousholt AN, Harmsen T et al (2018) Easy quantification of template-directed CRISPR/Cas9 editing. Nucleic Acids Res 46:e58

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Benedikt Wefers or Ralf Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wefers, B., Wurst, W., Kühn, R. (2023). Gene Editing in Mouse Zygotes Using the CRISPR/Cas9 System. In: Saunders, T.L. (eds) Transgenesis. Methods in Molecular Biology, vol 2631. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2990-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2990-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2989-5

  • Online ISBN: 978-1-0716-2990-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics