Skip to main content

NMR Analysis of the Interactions and Conformational Plasticity of Dynein Intermediate Chain

  • Protocol
  • First Online:
Dynein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2623))

  • 586 Accesses

Abstract

Cytoplasmic dynein complexes play crucial roles in intracellular transport of cellular organelles. While the motor domain of dynein is well characterized by techniques such as X-ray crystallography and cryo-electron microscopy (Cryo-EM), structural representations of dynein usually include only the more packed and easily resolved regions and omit the long flexible and poorly structured regions. One such flexible region is the N-terminal half of the intermediate chain (IC), which contains almost 300 amino acids that are predicted to be disordered. This level of disorder makes IC impossible to study by X-ray crystallography and Cryo-EM, but amenable to study by solution nuclear magnetic resonance (NMR), a powerful technique that can elucidate residue-specific information in a dynamic ensemble of structures, and transient binding interactions of associated proteins. Here, we describe the methods we use to characterize flexible and disordered proteins including protein expression, purification, sample preparation, and NMR data acquisition and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reck-Peterson SL, Redwine WB, Vale RD, Carter AP (2018) The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol 19:382–398. https://doi.org/10.1038/s41580-018-0004-3

    Article  CAS  Google Scholar 

  2. Morgan JL, Song Y, Barbar E (2011) Structural dynamics and multiregion interactions in dynein-dynactin recognition. J Biol Chem 286:39349–39359. https://doi.org/10.1074/jbc.M111.296277

    Article  CAS  Google Scholar 

  3. Jie J, Löhr F, Barbar E (2015) Interactions of Yeast Dynein with Dynein light chain and Dynactin: general implications for intrinsically disordered duplex scaffolds in multiprotein assemblies. J Biol Chem 290:23863–23874. https://doi.org/10.1074/jbc.M115.649715

    Article  CAS  Google Scholar 

  4. Makokha M, Hare M, Li M et al (2002) Interactions of cytoplasmic dynein light chains Tctex-1 and LC8 with the Intermediate Chain IC74. Biochemistry 41:4302–4311. https://doi.org/10.1021/bi011970h

    Article  CAS  Google Scholar 

  5. Nyarko A, Barbar E (2011) Light chain-dependent self-association of dynein intermediate chain. J Biol Chem 286:1556–1566. https://doi.org/10.1074/jbc.M110.171686

    Article  CAS  Google Scholar 

  6. Loening NM, Saravanan S, Jespersen NE et al (2020) Interplay of Disorder and Sequence Specificity in the Formation of Stable Dynein-Dynactin Complexes. Biophys J 119:950–965. https://doi.org/10.1016/j.bpj.2020.07.023

    Article  CAS  Google Scholar 

  7. Buchan DWA, Jones DT (2019) The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res 47:W402–W407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  Google Scholar 

  8. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  Google Scholar 

  9. Urnavicius L, Lau CK, Elshenawy MM et al (2018) Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature 554:202–206. https://doi.org/10.1038/nature25462

    Article  CAS  Google Scholar 

  10. Zhang K, Foster HE, Rondelet A et al (2017) Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. Cell 169:1303–1314.e18. https://doi.org/10.1016/j.cell.2017.05.025

    Article  CAS  Google Scholar 

  11. Muñoz V, Serrano L (1997) Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. Biopolymers 41:495–509. https://doi.org/10.1002/(SICI)1097-0282(19970415)41:5<495::AID-BIP2>3.0.CO;2-H

    Article  Google Scholar 

  12. Muñoz V, Serrano L (1994) Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Mol Biol 1:399–409. https://doi.org/10.1038/nsb0694-399

    Article  Google Scholar 

  13. Peckham M, Knight PJ (2009) When a predicted coiled coil is really a single α-helix, in myosins and other proteins. Soft Matter 5:2493–2503. https://doi.org/10.1039/B822339D

    Article  CAS  Google Scholar 

  14. Jie J, Löhr F, Barbar E (2017) Dynein binding of competitive regulators Dynactin and NudE involves novel interplay between phosphorylation site and disordered spliced linkers. Structure 25:421–433. https://doi.org/10.1016/j.str.2017.01.003

    Article  CAS  Google Scholar 

  15. Morgan JL, Yeager A, Estelle AB et al (2021) Transient tertiary structures of disordered dynein intermediate chain regulate its interactions with multiple partners. J Mol Biol 433:167152. https://doi.org/10.1016/j.jmb.2021.167152

    Article  CAS  Google Scholar 

  16. Nyarko A, Song Y, Barbar E (2012) Intrinsic disorder in dynein intermediate chain modulates its interactions with NudE and Dynactin. J Biol Chem 287:24884–24893. https://doi.org/10.1074/jbc.M112.376038

    Article  CAS  Google Scholar 

  17. Vallee RB, McKenney RJ, Ori-McKenney KM (2012) Multiple modes of cytoplasmic dynein regulation. Nat Cell Biol 14:224–230. https://doi.org/10.1038/ncb2420

    Article  CAS  Google Scholar 

  18. King SJ, Brown CL, Maier KC et al (2003) Analysis of the Dynein-dynactin interaction in vitro and in vivo. Mol Biol Cell 14:5089–5097. https://doi.org/10.1091/mbc.E03-01-0025

    Article  CAS  Google Scholar 

  19. Hall J, Karplus PA, Barbar E (2009) Multivalency in the assembly of intrinsically disordered Dynein intermediate chain. J Biol Chem 284:33115–33121. https://doi.org/10.1074/jbc.M109.048587

    Article  CAS  Google Scholar 

  20. Hall J, Song Y, Karplus PA, Barbar E (2010) The crystal structure of dynein intermediate chain-light chain roadblock complex gives new insights into dynein assembly. J Biol Chem 285:22566–22575. https://doi.org/10.1074/jbc.M110.103861

    Article  CAS  Google Scholar 

  21. Benison G, Nyarko A, Barbar E (2006) Heteronuclear NMR identifies a nascent helix in intrinsically disordered dynein intermediate chain: implications for folding and dimerization. J Mol Biol 362:1082–1093. https://doi.org/10.1016/j.jmb.2006.08.006

    Article  CAS  Google Scholar 

  22. Poulsen F (2003) A brief introduction to NMR spectroscopy of proteins. undefined

    Google Scholar 

  23. Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse Relaxation-Optimized Spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-Labeled Proteins. J Am Chem Soc 120:6394–6400. https://doi.org/10.1021/ja980742g

    Article  CAS  Google Scholar 

  24. Fernández C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580. https://doi.org/10.1016/j.sbi.2003.09.009

    Article  CAS  Google Scholar 

  25. Venditti V, Fawzi NL (2018) Probing the atomic structure of transient protein contacts by paramagnetic relaxation enhancement solution NMR. Methods Mol Biol 1688:243–255. https://doi.org/10.1007/978-1-4939-7386-6_12

    Article  CAS  Google Scholar 

  26. Clore GM (2008) Visualizing lowly-populated regions of the free energy landscape of macromolecular complexes by paramagnetic relaxation enhancement. Mol BioSyst 4:1058–1069. https://doi.org/10.1039/b810232e

    Article  CAS  Google Scholar 

  27. Ganguly D, Chen J (2009) Structural interpretation of paramagnetic relaxation enhancement-derived distances for disordered protein states. J Mol Biol 390:467–477. https://doi.org/10.1016/j.jmb.2009.05.019

    Article  CAS  Google Scholar 

  28. Delaglio F, Grzesiek S, Vuister GW et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293. https://doi.org/10.1007/BF00197809

    Article  CAS  Google Scholar 

  29. Vranken WF, Boucher W, Stevens TJ et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696. https://doi.org/10.1002/prot.20449

    Article  CAS  Google Scholar 

  30. Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. In: Downing AK (ed) Protein NMR techniques. Humana Press, Totowa, NJ, pp 313–352

    Chapter  Google Scholar 

  31. Coggins BE, Werner-Allen JW, Yan A, Zhou P (2012) Rapid protein global fold determination using ultrasparse sampling, high-dynamic range artifact suppression, and time-shared NOESY. J Am Chem Soc 134:18619–18630. https://doi.org/10.1021/ja307445y

    Article  CAS  Google Scholar 

  32. Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241. https://doi.org/10.1007/s10858-013-9741-y

    Article  CAS  Google Scholar 

  33. Rieping W, Habeck M, Bardiaux B et al (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382. https://doi.org/10.1093/bioinformatics/btl589

    Article  CAS  Google Scholar 

  34. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22:851–858. https://doi.org/10.1002/pro.2253

    Article  CAS  Google Scholar 

  35. Lepre CA, Moore JM (1998) Microdrop screening: a rapid method to optimize solvent conditions for NMR spectroscopy of proteins. J Biomol NMR 12:493–499. https://doi.org/10.1023/a:1008353000679

    Article  CAS  Google Scholar 

  36. Solyom Z, Schwarten M, Geist L et al (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. https://doi.org/10.1007/s10858-013-9715-0

    Article  CAS  Google Scholar 

  37. Zhu G, Xia Y, Nicholson LK, Sze KH (2000) Protein dynamics measurements by TROSY-based NMR experiments. J Magn Reson 143:423–426. https://doi.org/10.1006/jmre.2000.2022

    Article  CAS  Google Scholar 

  38. Wagstaff JL, Taylor SL, Howard MJ (2013) Recent developments and applications of saturation transfer difference nuclear magnetic resonance (STD NMR) spectroscopy. Mol BioSyst 9:571–577. https://doi.org/10.1039/c2mb25395j

    Article  CAS  Google Scholar 

  39. Becker W, Bhattiprolu KC, Gubensäk N, Zangger K (2018) Investigating protein-ligand interactions by solution nuclear magnetic resonance spectroscopy. ChemPhysChem 19:895–906. https://doi.org/10.1002/cphc.201701253

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisar J. Barbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jara, K.A., Barbar, E.J. (2023). NMR Analysis of the Interactions and Conformational Plasticity of Dynein Intermediate Chain. In: Markus, S.M. (eds) Dynein. Methods in Molecular Biology, vol 2623. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2958-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2958-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2957-4

  • Online ISBN: 978-1-0716-2958-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics