Skip to main content

Comparative SUMO Proteome Analysis Using Stable Isotopic Labeling by Amino Acids (SILAC)

  • Protocol
  • First Online:
SILAC

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2603))

Abstract

Sumoylation is a dynamic protein posttranslational modification that contributes to many intracellular pathways, including nucleocytoplasmic transport, DNA repair, transcriptional control, and chromatin remodeling. Interestingly, various stress conditions such as heat shock, oxidative stress, and ischemia promote global changes in sumoylation in different cells or tissues. However, due to limitations in either abundance or steady state sumoylation level, it is often difficult to detect differences in the sumoylation of a protein under different conditions simply by immunoblotting. In the last decade, the enrichment of endogenous sumoylated proteins has been greatly improved using immunoprecipitation techniques. Combining these methods with quantitative methodologies such as Stable Isotopic Labeling with Amino Acids in Cell culture (SILAC), it is feasible to identify the sumoylation status of a wide range of proteins and detect changes in SUMO conjugation under different experimental conditions. In this chapter, we describe a method that allows comparison of the sumoylated proteome in HeLa cells between two conditions, using differential labeling by light or heavy amino acids (SILAC), isolation of endogenous sumoylated (SUMO1 and SUMO2/3) proteins with immunoprecipitation and MS analysis. We also discuss the conceptual design and the considerations before performing such an experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385. https://doi.org/10.1146/annurev-biochem-061909-093311

    Article  CAS  PubMed  Google Scholar 

  2. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871. https://doi.org/10.1038/nrm3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chang HM, Yeh ETH (2020) SUMO: from bench to bedside. Physiol Rev 100:1599–1619. https://doi.org/10.1152/physrev.00025.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varejão N, Lascorz J, Li Y, Reverter D (2020) Molecular mechanisms in SUMO conjugation. Biochem Soc Trans 48(1):123–135. https://doi.org/10.1042/BST20190357

    Article  PubMed  Google Scholar 

  5. Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140(2):259–270. https://doi.org/10.1083/jcb.140.2.259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barysch SV, Dittner C, Flotho A, Becker J, Melchior F (2014) Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies. Nat Protoc 9(4):896–909. https://doi.org/10.1038/nprot.2014.053

    Article  CAS  PubMed  Google Scholar 

  7. Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel Diaz M et al (2013) Detecting endogenous SUMO targets in mammalian cells and tissues. Nat Struct Mol Biol 20(4):525–531. https://doi.org/10.1038/nsmb.2526

    Article  CAS  PubMed  Google Scholar 

  8. Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H et al (2019) Hypoxia-induced changes in SUMO conjugation affect transcriptional regulation under low oxygen. Mol Cell Proteomics 18(6):1197–1209. https://doi.org/10.1074/mcp.RA119.001401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filippopoulou C, Simos G, Chachami G (2020) The role of sumoylation in the response to hypoxia: an overview. Cell 9(11):2359. https://doi.org/10.3390/cells9112359

    Article  CAS  Google Scholar 

  10. Barysch SV, Stankovic-Valentin N, Miedema T, Karaca S, Doppel J, Nait Achour T et al (2021) Transient deSUMOylation of IRF2BP proteins controls early transcription in EGFR signaling. EMBO Rep 22(3):e49651. https://doi.org/10.15252/embr.201949651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Correa-Vázquez JF, Juárez-Vicente F, García-Gutiérrez P, Barysch SV, Melchior F, García-Domínguez M (2021) The Sumo proteome of proliferating and neuronal-differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. Cell Death Dis 12(4):305. https://doi.org/10.1038/s41419-021-03590-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hendriks IA, Vertegaal AC (2016) A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 17(9):581–595. https://doi.org/10.1038/nrm.2016.81

    Article  CAS  PubMed  Google Scholar 

  13. Hendriks IA, Lyon D, Su D, Skotte NH, Daniel JA, Jensen LJ et al (2018) Site-specific characterization of endogenous SUMOylation across species and organs. Nat Commun 9(1):2456. https://doi.org/10.1038/s41467-018-04957-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Argenzio E, Bange T, Oldrini B, Bianchi F, Peesari R, Mari S et al (2011) Proteomic snapshot of the EGF-induced ubiquitin network. Mol Syst Biol 7:462. https://doi.org/10.1038/msb.2010.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135(6 Pt 1):1457–1470. https://doi.org/10.1083/jcb.135.6.1457

    Article  CAS  PubMed  Google Scholar 

  16. Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671. https://doi.org/10.1172/JCI67230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Semenza GL (2017) A compendium of proteins that interact with HIF-1α. Exp Cell Res 356(2):128–135. https://doi.org/10.1016/j.yexcr.2017.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Theurillat I, Hendriks IA, Cossec JC, Andrieux A, Nielsen ML, Dejean A (2020) Extensive SUMO modification of repressive chromatin factors distinguishes pluripotent from somatic cells. Cell Rep 33(1):108251. https://doi.org/10.1016/j.celrep.2020.108251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Henning Urlaub (MPI, Gottingen) for MS analysis. We thank Prof. Dr. Frauke Melchior (ZMBH, Heidelberg) and all Melchior lab members for sharing reagents and advice. A special thanks to M. Matunis (Johns Hopkins University, Baltimore, Maryland, USA) for providing the hybridomas 21C7 and 8A2 to the community. We thank Prof. Dr. George Simos for his useful comments and critical review of this manuscript.

Funding

G.C. was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project Number: 1460 grant to G.C.). SVB was supported by DFG (German Research Foundation) – Project Number 278001972 – TRR 186, the DGF-funded Cluster of Excellence CellNetworks Postdoc Program and the Peter and Traudl Engelhorn Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Chachami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chachami, G., Barysch, SV. (2023). Comparative SUMO Proteome Analysis Using Stable Isotopic Labeling by Amino Acids (SILAC). In: Luque-Garcia, J.L. (eds) SILAC. Methods in Molecular Biology, vol 2603. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2863-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2863-8_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2862-1

  • Online ISBN: 978-1-0716-2863-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics