Skip to main content

Single-Cell mRNA-Seq of In Vitro-Derived Human Neurons Using Smart-Seq2

  • Protocol
  • First Online:
Transcription Factor Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2594))

Abstract

Single-cell mRNA sequencing can dissect heterogeneous cell populations as it can identify cell types and cellular states based on their unique transcriptional signatures. We use fluorescence-activated cell sorting (FACS) to isolate individual cultured neurons derived from human-induced pluripotent stem cells (hiPSCs) followed by polyA-based Smart-Seq2 RNA sequencing to analyze the single-cell transcriptional profiles. We provide protocols and guidelines on dissociation, cell selection, and library preparation that can be readily adapted to other cell types or tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Picelli S, Björklund ÅK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098. https://doi.org/10.1038/nmeth.2639

    Article  CAS  PubMed  Google Scholar 

  2. Picelli S (2017) Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol 14:637–650. https://doi.org/10.1080/15476286.2016.1201618

    Article  PubMed  Google Scholar 

  3. Ding J, Adiconis X, Simmons SK et al (2020) Systematic comparison of single-cell and single-nucleus RNA-sequencing methods. Nat Biotechnol 38:737–746. https://doi.org/10.1038/s41587-020-0465-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nichterwitz S, Benitez JA, Hoogstraaten R et al (2018) LCM-Seq: a method for spatial transcriptomic profiling using laser capture microdissection coupled with PolyA-based RNA sequencing. Methods Mol Biol 1649:95–110. https://doi.org/10.1007/978-1-4939-7213-5_6

    Article  CAS  PubMed  Google Scholar 

  5. Picelli S, Faridani OR, Björklund AK et al (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181. https://doi.org/10.1038/nprot.2014.006

    Article  CAS  PubMed  Google Scholar 

  6. Nichterwitz S, Chen G, Aguila Benitez J et al (2016) Laser capture microscopy coupled with smart-seq2 for precise spatial transcriptomic profiling. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms12139

    Article  CAS  Google Scholar 

  7. Nijssen J, Aguila J, Hedlund E (2019) Axon-seq for in depth analysis of the RNA content of neuronal processes. Bio-Protocol 9. https://doi.org/10.21769/BioProtoc.3312

  8. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:637–648. https://doi.org/10.1016/j.stem.2008.09.017

    Article  CAS  PubMed  Google Scholar 

  9. Kapteyn J, He R, McDowell ET, Gang DR (2010) Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples. BMC Genomics 11. https://doi.org/10.1186/1471-2164-11-413

  10. Picelli S, Björklund AK, Reinius B et al (2014) Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res 24:2033–2040. https://doi.org/10.1101/gr.177881.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hennig BP, Velten L, Racke I et al (2018) Large-scale low-cost NGS library preparation using a robust Tn5 purification and Tagmentation protocol. G3#58; Genes Genomes Genetics 8:79–89. https://doi.org/10.1534/g3.117.300257

    Article  CAS  PubMed  Google Scholar 

  12. Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res 22:939–946. https://doi.org/10.1101/gr.128124.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mattias Karlen for help with Fig. 1. Flow cytometry was performed in the Biomedicum Flowcytometry Core Facility with support of the Karolinska Institutet. We thank Juan Basile and Belinda Pannagel for assisting with flow cytometry. We are grateful for discussions with other members of the Hedlund laboratory. We are also thankful for discussions with and support from members of Rickard Sandberg’s lab. The work in the Hedlund laboratory is supported by grants from the Swedish Research Council (grant number 2020-01049), The Radala Foundation for ALS Research (Switzerland), Ulla-Carin Lindquists Foundation for ALS Research (Ulla-Carin Lindquists stiftelse för ALS forskning), Åhlén-stiftelsen (grant number 213051), Olav Thon Stiftelsen (Norway), The Swedish Brain Foundation (Hjärnfonden) (grant number FO2021-0145) and Parkinsonfonden (grant number 1328/21). C.S. was supported by an Early Postdoc.Mobility fellowship from the Swiss National Science Foundation (P2BEP3_172233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hedlund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schweingruber, C., Nijssen, J., Benitez, J.A., Hedlund, E. (2023). Single-Cell mRNA-Seq of In Vitro-Derived Human Neurons Using Smart-Seq2. In: Song, Q., Tao, Z. (eds) Transcription Factor Regulatory Networks. Methods in Molecular Biology, vol 2594. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2815-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2815-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2814-0

  • Online ISBN: 978-1-0716-2815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics