Skip to main content

RNA Structure Determination by High-Throughput Structural Analysis

  • Protocol
  • First Online:
RNA Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2586))

Abstract

RNA functions are closely linked with their structures. Therefore, elucidating the secondary structure of RNAs provides crucial information regarding their function. The chemical modification or RNase-mediated digestion of single-stranded RNA has been utilized to experimentally reveal RNA secondary structures. Owing to advances in high-throughput sequencing technology and chemical analysis, RNA structural analyses that enable structural profiling at the transcriptomic scale in living cells have been developed. Here, we provide an overview of the high-throughput RNA structural (HTS) analyses and describe the computational processing steps of recent HTS analysis pipelines: PROBer, BUMHMM, and reactIDR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sharp PA (2009) The centrality of RNA. Cell 136:577–580. https://doi.org/10.1016/j.cell.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  2. Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet 15:469–479. https://doi.org/10.1038/nrg3681

    Article  CAS  PubMed  Google Scholar 

  3. Strobel EJ, Watters KE, Loughrey D, Lucks JB (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr Opin Biotechnol 39:182–191. https://doi.org/10.1016/j.copbio.2016.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan Y, Kertesz M, Spitale RC et al (2011) Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. https://doi.org/10.1038/nrg3049

    Article  CAS  PubMed  Google Scholar 

  5. Mathews DH, Moss WN, Turner DH (2010) Folding and finding RNA secondary structure. Cold Spring Harb Perspect Biol 2. https://doi.org/10.1101/cshperspect.a003665

  6. Spitale RC, Flynn RA, Torre EA et al (2014) RNA structural analysis by evolving SHAPE chemistry. Wiley Interdiscip Rev RNA 5:867–881. https://doi.org/10.1002/wrna.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ding Y, Tang Y, Kwok CK et al (2014) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature 505:696–700. https://doi.org/10.1038/nature12756

    Article  CAS  PubMed  Google Scholar 

  8. Rouskin S, Zubradt M, Washietl S et al (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–705. https://doi.org/10.1038/nature12894

    Article  CAS  PubMed  Google Scholar 

  9. Wan Y, Qu K, Zhang QC et al (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505:706–709. https://doi.org/10.1038/nature12946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lucks JB, Mortimer SA, Trapnell C et al (2011) Multiplexed RNA structure characterization with selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc Natl Acad Sci U S A 108:11063–11068. https://doi.org/10.1073/pnas.1106501108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20. https://doi.org/10.1038/nchembio.1131

    Article  CAS  PubMed  Google Scholar 

  12. Spitale RC, Flynn RA, Zhang QC et al (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519:486–490. https://doi.org/10.1038/nature14263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Siegfried NA, Busan S, Rice GM et al (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Methods 11:959–965. https://doi.org/10.1038/nmeth.3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kertesz M, Wan Y, Mazor E et al (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. https://doi.org/10.1038/nature09322

    Article  CAS  PubMed  Google Scholar 

  15. Choudhary K, Deng F, Aviran S (2017) Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. Quant Biol 5:3–24. https://doi.org/10.1007/s40484-017-0093-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Low JT, Weeks KM (2010) SHAPE-directed RNA secondary structure prediction. Methods 52:150–158. https://doi.org/10.1016/j.ymeth.2010.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Incarnato D, Neri F, Anselmi F, Oliviero S (2014) Genome-wide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol 15:491. https://doi.org/10.1186/s13059-014-0491-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Aviran S, Trapnell C, Lucks JB et al (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc Natl Acad Sci U S A 108:11069–11074. https://doi.org/10.1073/pnas.1106541108

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hu X, Wong TKF, Lu ZJ et al (2014) Computational identification of protein binding sites on RNAs using high-throughput RNA structure-probing data. Bioinformatics 30:1049–1055. https://doi.org/10.1093/bioinformatics/btt757

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Tambe A, Aviran S, Pachter L (2017) PROBer provides a general toolkit for Analyzing sequencing-based Toeprinting assays. Cell Syst 4:568–574.e7. https://doi.org/10.1016/j.cels.2017.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Talkish J, May G, Lin Y et al (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20:713–720. https://doi.org/10.1261/rna.042218.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Selega A, Sirocchi C, Iosub I et al (2017) Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat Methods 14:83–89. https://doi.org/10.1038/nmeth.4068

    Article  CAS  PubMed  Google Scholar 

  23. Kawaguchi R, Kiryu H, Iwakiri J, Sese J (2019) reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction. BMC Bioinformatics 20:130. https://doi.org/10.1186/s12859-019-2645-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. König J, Zarnack K, Rot G et al (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat Struct Mol Biol 17:909–915. https://doi.org/10.1038/nsmb.1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlile TM, Rojas-Duran MF, Zinshteyn B et al (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zubradt M, Gupta P, Persad S et al (2016) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat Methods 14:75–82. https://doi.org/10.1038/nmeth.4057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li C, Hatta M, Nidom CA et al (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci 107:4687–4692. https://doi.org/10.1073/pnas.0912807107

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li Q, Brown JB, Huang H, Bickel PJ (2011) Measuring reproducibility of high-throughput experiments. Ann Appl Stat 5:1752–1779. https://doi.org/10.1214/11-AOAS466

    Article  Google Scholar 

  29. Flynn RA, Zhang QC, Spitale RC et al (2016) Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE. Nat Protoc 11:273–290. https://doi.org/10.1038/nprot.2016.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smola MJ, Rice GM, Busan S et al (2015) Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat Protoc 10:1643–1669. https://doi.org/10.1038/nprot.2015.103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ding Y, Kwok CK, Tang Y et al (2015) Genome-wide profiling of in vivo RNA structure at single-nucleotide resolution using structure-seq. Nat Protoc 10:1050–1066. https://doi.org/10.1038/nprot.2015.064

    Article  CAS  PubMed  Google Scholar 

  32. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Takizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Takizawa, N. (2023). RNA Structure Determination by High-Throughput Structural Analysis. In: Kawaguchi, R.K., Iwakiri, J. (eds) RNA Structure Prediction. Methods in Molecular Biology, vol 2586. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2768-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2768-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2767-9

  • Online ISBN: 978-1-0716-2768-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics