Skip to main content

Generation of Conditional KO Mice of CCN2 and Its Function in the Kidney

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2582))

Abstract

CCN2 has been shown to be closely involved in the progression of renal fibrosis, indicating the potential of CCN2 inhibition as a therapeutic target. Although the examination of the renal disease phenotypes of adult CCN2 knockout mice has yielded valuable scientific insights, perinatal death has limited studies of CCN2 in vivo. Conditional knockout technology has become widely used to delete genes in the target cell populations or time points using cell-specific Cre recombinase-expressing mice. Therefore, several lines of CCN2-floxed mice have been developed to assess the functional role of CCN2 in adult mice.

CCN2 levels are elevated in renal fibrosis and proliferative glomerulonephritis, making them suitable disease models for assessing the effects of CCN2 deletion on the kidney. Renal fibrosis is characterized by glomerulosclerosis and tubulointerstitial fibrosis and transforming growth factor-β. CCN2 is increased in fibrosis and modulates a number of downstream signaling pathways involved in the fibrogenic properties of TGF-β. Unilateral ureteral obstruction is one of the most widely used models of renal tubulointerstitial fibrosis. In addition, anti-glomerular basement membrane antibody glomerulonephritis has become the most widely used model for evaluating the effect of increased renal CCN2 expression. Herein, we describe the construction of CCN2-floxed mice and inducible systemic CCN2 conditional knockout mice and methods for the operation of unilateral ureteral obstruction and the induction of anti-glomerular basement membrane antibody glomerulonephritis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ito Y, Aten J, Bende RJ, Oemar BS, Rabelink TJ, Weening JJ, Goldschmeding R (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney Int 53:853–861

    Article  CAS  PubMed  Google Scholar 

  2. Yokoi H, Mukoyama M, Sugawara A et al (2002) Role of connective tissue growth factor in fibronectin expression and tubulointerstitial fibrosis. Am J Physiol Renal Physiol 282:F933–F942

    Article  CAS  PubMed  Google Scholar 

  3. Kanamoto N, Tagami T, Ueda-Sakane Y et al (2012) Forkhead box A1 (FOXA1) and A2 (FOXA2) oppositely regulate human type 1 iodothyronine deiodinase gene in liver. Endocrinology 153:492–500

    Article  CAS  PubMed  Google Scholar 

  4. Duncan MR, Frazier KS, Abramson S et al (1999) Connective tissue growth factor mediates transforming growth factor β-induced collagen synthesis: down-regulation by cAMP. FASEB J 13:1774–1786

    Article  CAS  PubMed  Google Scholar 

  5. Yokoi H, Mukoyama M, Nagae T et al (2004) Reduction in connective tissue growth factor by antisense treatment ameliorates renal tubulointerstitial fibrosis. J Am Soc Nephrol 15:1430–1440

    Article  CAS  PubMed  Google Scholar 

  6. Adler SG, Schwartz S, Williams ME et al (2010) Phase 1 study of anti-CTGF monoclonal antibody in patients with diabetes and microalbuminuria. Clin J Am Soc Nephrol 5:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Falke LL, Dendooven A, Leeuwis JW et al (2012) Hemizygous deletion of CTGF/CCN2 does not suffice to prevent fibrosis of the severely injured kidney. Matrix Biol 31:421–431

    Article  CAS  PubMed  Google Scholar 

  8. Ivkovic S, Yoon BS, Popoff SN et al (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130:2779–2791

    Article  CAS  PubMed  Google Scholar 

  9. Stricklett PK, Nelson RD, Kohan DE (1999) The Cre/loxP system and gene targeting in the kidney. Am J Physiol Renal Physiol 276:F651–F657

    Article  CAS  Google Scholar 

  10. Danielian PS, Muccino D, Rowitch DH et al (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  CAS  PubMed  Google Scholar 

  11. Feil R, Wagner J, Metzger D et al (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757

    Article  CAS  PubMed  Google Scholar 

  12. Toda N, Mori K, Kasahara M et al (2017) Crucial role of mesangial cell-derived connective tissue growth factor in a mouse model of anti-glomerular basement membrane glomerulonephritis. Sci Rep 7:42114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suganami T, Mukoyama M, Sugawara A et al (2001) Overexpression of brain natriuretic peptide in mice ameliorates immune-mediated renal injury. J Am Soc Nephrol 12:2652–2663

    Article  CAS  PubMed  Google Scholar 

  14. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656

    Article  PubMed  Google Scholar 

  16. Loeffler I, Wolf G (2014) Transforming growth factor-β and the progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i37–i45

    Article  CAS  PubMed  Google Scholar 

  17. Farris AB, Colvin RB (2012) Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 21:289–300

    Article  PubMed  PubMed Central  Google Scholar 

  18. Isaka Y, Tsujie M, Ando Y et al (2000) Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 58:1885–1892

    Article  CAS  PubMed  Google Scholar 

  19. Cohen AH (1976) Masson’s trichrome stain in the evaluation of renal biopsies. An appraisal. Am J Clin Pathol 65:631–643

    Article  CAS  PubMed  Google Scholar 

  20. Hewitson TD, Smith ER, Samuel CS (2014) Qualitative and quantitative analysis of fibrosis in the kidney. Nephrology (Carlton) 19:721–726

    Article  Google Scholar 

  21. Kok HM, Falke LL, Goldschmeding R et al (2014) Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 10:700–711

    Article  CAS  PubMed  Google Scholar 

  22. Frazier K, Williams S, Kothapalli D et al (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  CAS  PubMed  Google Scholar 

  23. Okada H, Kikuta T, Kobayashi T et al (2005) Connective tissue growth factor expressed in tubular epithelium plays a pivotal role in renal fibrogenesis. J Am Soc Nephrol 16:133–143

    Article  CAS  PubMed  Google Scholar 

  24. Guha M, Xu ZG, Tung D et al (2007) Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. FASEB J 21(3355–3368):2007

    Google Scholar 

  25. Abreu JG, Ketpura NI, Reversade B et al (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 4:599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nguyen TQ, Roestenberg P, van Nieuwenhoven FA et al (2008) CTGF inhibits BMP-7 signaling in diabetic nephropathy. J Am Soc Nephrol 19:2098–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283:F861–F875

    Article  PubMed  Google Scholar 

  28. Diamond JR, Kees-Folts D, Ding G et al (1994) Macrophages, monocyte chemoattractant peptide-1, and TGF-β1 in experimental hydronephrosis. Am J Physiol Renal Physiol 266:F926–F933

    Article  CAS  Google Scholar 

  29. Diamond JR, van Goor H, Ding G et al (1995) Myofibroblasts in experimental hydronephrosis. Am J Pathol 146:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  30. James LR, Le C, Doherty H et al (2013) Connective tissue growth factor (CTGF) expression modulates response to high glucose. PLoS One 8:e70441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rayego-Mateos S, Morgado-Pascual JL, Rodrigues-Diez RR et al (2018) Connective tissue growth factor induces renal fibrosis via epidermal growth factor receptor activation. J Pathol 244:227–241

    Article  CAS  PubMed  Google Scholar 

  32. Inoue T, Kusano T, Amano H et al (2019) Cellular communication network factor 2 (CCN2) promotes the progression of acute kidney injury to chronic kidney disease. Biochem Biophys Res Commun 517:96–102

    Article  CAS  PubMed  Google Scholar 

  33. Dwivedi N, Tao S, Jamadar A et al (2020) Epithelial vasopressin type-2 receptors regulate myofibroblasts by a YAP-CCN2-dependent mechanism in polycystic kidney disease. J Am Soc Nephrol 31:1697–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asano T, Niimura F, Pastan I et al (2005) Permanent genetic tagging of podocytes: fate of injured podocytes in a mouse model of glomerular sclerosis. J Am Soc Nephrol 16:2257–2262

    Article  CAS  PubMed  Google Scholar 

  35. Nagashima T, Kim J, Li Q et al (2011) Connective tissue growth factor is required for normal follicle development and ovulation. Mol Endocrinol 25:1740–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gibson DJ, Pi L, Sriram S et al (2014) Conditional knockout of CTGF affects corneal wound healing. Invest Ophthalmol Vis Sci 55:2062–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pi L, Robinson PM, Jorgensen M et al (2015) Connective tissue growth factor and integrin αvβ6: a new pair of regulators critical for ductular reaction and biliary fibrosis in mice. Hepatology 61:678–691

    Article  CAS  PubMed  Google Scholar 

  38. Liu S, Shi-wen X, Abraham DJ et al (2011) CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum 63:239–246

    Article  CAS  PubMed  Google Scholar 

  39. Fontes MS, Kessler EL, van Stuijvenberg L et al (2015) CTGF knockout does not affect cardiac hypertrophy and fibrosis formation upon chronic pressure overload. J Mol Cell Cardiol 88:82–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by research grants from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Yokoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yokoi, H., Toda, N., Mukoyama, M. (2023). Generation of Conditional KO Mice of CCN2 and Its Function in the Kidney. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 2582. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2744-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2744-0_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2743-3

  • Online ISBN: 978-1-0716-2744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics