Skip to main content

Atomic Force Microscopy-Based Measurements of Retinal Microvessel Stiffness in Mice with Endothelial-Specific Deletion of CCN1

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2582))

Abstract

Vascular stiffness is an independent predictor of human vascular diseases and is linked to ischemia, diabetes, high blood pressure, hyperlipidemia, and/or aging. Blood vessel stiffening increases owing to changes in the microscale architecture and/or content of extracellular, cytoskeletal, and nuclear matrix proteins. These alterations, while best appreciated in large blood vessels, also gradually occur in the microvasculature and play an important role in the initiation and progression of numerous microangiopathies including diabetic retinopathy. Although macroscopic measurements of arterial stiffness by pulse wave velocity are often used for clinical diagnosis, stiffness changes of intact microvessels and their causative factors have not been characterized. Herein, we describe the use of atomic force microscopy (AFM) to determine stiffness of mouse retinal capillaries and assess its regulation by the cellular communication network (CCN) 1, a stiffness-sensitive gene-encoded matricellular protein. AFM yields reproducible measurements of retinal capillary stiffness in lightly fixed freshly isolated retinal flat mounts. AFM measurements also show significant changes in compliance properties of the retinal microvasculature of mice with endothelial-specific deletion of CCN1, indicating that CCN1 expression, or lack thereof, affects the mechanical properties of microvascular cells in vivo. Thus, AFM has the force sensitivity and the spatial resolution necessary to measure the local modulus of retinal capillaries in situ and eventually to investigate microvascular compliance heterogeneities as key components of disease pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lin J, Sorrells MG, Lam WA, Neeves KB (2021) Physical forces regulating hemostasis and thrombosis: vessels, cells, and molecules in illustrated review. Res Pract Thromb Haemost 5:e12548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chaqour B (2020) Caught between a "Rho" and a hard place: are CCN1/CYR61 and CCN2/CTGF the arbiters of microvascular stiffness? J Cell Commun Signal 14:21–29

    Article  PubMed  Google Scholar 

  3. Moon S, Lee S, Caesar JA, Pruchenko S, Leask A, Knowles JA, Sinon J, Chaqour B (2020) A CTGF-YAP regulatory pathway is essential for angiogenesis and Barriergenesis in the retina. Iscience 23:2020.2003.2016.994293

    Article  Google Scholar 

  4. Frye M, Taddei A, Dierkes C, Martinez-Corral I, Fielden M, Ortsater H, Kazenwadel J, Calado DP, Ostergaard P, Salminen M et al (2018) Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nat Commun 9:1511

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klein EA, Yin L, Kothapalli D, Castagnino P, Byfield FJ, Xu T, Levental I, Hawthorne E, Janmey PA, Assoian RK (2009) Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19:1511–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kniazeva E, Putnam AJ (2009) Endothelial cell traction and ECM density influence both capillary morphogenesis and maintenance in 3-D. Am J Physiol Cell Physiol 297:C179–C187

    Article  CAS  PubMed  Google Scholar 

  7. London GM, Marchais SJ, Guerin AP, Pannier B (2004) Arterial stiffness: pathophysiology and clinical impact. Clin Exp Hypertens 26:689–699

    Article  PubMed  Google Scholar 

  8. Palombo C, Kozakova M (2016) Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol 77:1–7

    Article  CAS  Google Scholar 

  9. Pessina AC (2007) Target organs of individuals with diabetes caught between arterial stiffness and damage to the microcirculation. J Hypertens Suppl 25:S13–S18

    Article  CAS  PubMed  Google Scholar 

  10. Cusma-Piccione M, Zito C, Khandheria BK, Pizzino F, Di Bella G, Antonini-Canterin F, Vriz O, Bello VA, Zimbalatti C, La Carrubba S et al (2014) How arterial stiffness may affect coronary blood flow: a challenging pathophysiological link. J Cardiovasc Med (Hagerstown) 15:797–802

    Article  Google Scholar 

  11. Antonopoulos AS, Siasos G, Oikonomou E, Gouliopoulos N, Konsola T, Tsigkou V, Moschos M, Tentolouris N, Kassi E, Paschou SA et al (2021) Arterial stiffness and microvascular disease in type 2 diabetes. Eur J Clin Investig 51:e13380

    Article  CAS  Google Scholar 

  12. Cardoso CR, Ferreira MT, Leite NC, Barros PN, Conte PH, Salles GF (2009) Microvascular degenerative complications are associated with increased aortic stiffness in type 2 diabetic patients. Atherosclerosis 205:472–476

    Article  CAS  PubMed  Google Scholar 

  13. Gordin D, Groop PH (2016) Aspects of Hyperglycemia contribution to arterial stiffness and cardiovascular complications in patients with type 1 diabetes. J Diabetes Sci Technol 10:1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yannoutsos A, Levy BI, Safar ME, Slama G, Blacher J (2014) Pathophysiology of hypertension: interactions between macro and microvascular alterations through endothelial dysfunction. J Hypertens 32:216–224

    Article  CAS  PubMed  Google Scholar 

  15. Chaqour B (2013) New insights into the function of the Matricellular CCN1: an emerging target in proliferative retinopathies. J Ophthalmic Vis Res 8:77–82

    PubMed  PubMed Central  Google Scholar 

  16. Chaqour B (2013) Molecular control of vascular development by the matricellular proteins CCN1 (Cyr61) and CCN2 (CTGF). Trends Dev Biol 7:59–72

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. FEBS J 273:3639–3649

    Article  CAS  PubMed  Google Scholar 

  18. Hanna M, Liu H, Amir J, Sun Y, Morris SW, Siddiqui MA, Lau LF, Chaqour B (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284:23125–23136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reid SE, Kay EJ, Neilson LJ, Henze AT, Serneels J, McGhee EJ, Dhayade S, Nixon C, Mackey JB, Santi A et al (2017) Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO J 36:2373–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eaton P, Batziou K (2019) Artifacts and practical issues in atomic force microscopy. Methods Mol Biol 1886:3–28

    Article  CAS  PubMed  Google Scholar 

  21. Rusaczonek M, Zapotoczny B, Szymonski M, Konior J (2019) Application of a layered model for determination of the elasticity of biological systems. Micron 124:102705

    Article  CAS  PubMed  Google Scholar 

  22. Chaqour B (2016) Regulating the regulators of angiogenesis by CCN1 and taking it up a Notch. J Cell Commun Signal 10:259–261

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chintala H, Krupska I, Yan L, Lau L, Grant M, Chaqour B (2015) The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling. Development 142:2364–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee S, Ahad A, Luu M, Moon S, Caesar J, Cardoso WV, Grant MB, Chaqour B (2019) CCN1-yes-associated protein feedback loop regulates physiological and pathological angiogenesis. Mol Cell Biol 39:e00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Connor S, Gaddis R, Anderson E, Camesano TA, Burnham NA (2015) A high throughput MATLAB program for automated force-curve processing using the AdG polymer model. J Microbiol Methods 109:31–38

    Article  CAS  PubMed  Google Scholar 

  26. Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic Myofibroblasts. Mol Cell Biol 33:2078–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moore BA, Roux MJ, Sebbag L, Cooper A, Edwards SG, Leonard BC, Imai DM, Griffey S, Bower L, Clary D et al (2018) A population study of common ocular abnormalities in C57BL/6N rd8 mice. Invest Ophthalmol Vis Sci 59:2252–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang B (2013) Mouse models for studies of retinal degeneration and diseases. Methods Mol Biol 935:27–39

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed, at least in part, at SUNY Downstate Medical Center (Brooklyn, NY). This work was supported in part by grants from the National Eye Institute of the National Institutes of Health, EY022091 (to B.C.) and EY12601(to MBG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahim Chaqour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chaqour, B., Grant, M.B., Lau, L.F., Wang, B., Urbanski, M.M., Melendez-Vasquez, C.V. (2023). Atomic Force Microscopy-Based Measurements of Retinal Microvessel Stiffness in Mice with Endothelial-Specific Deletion of CCN1. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 2582. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2744-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2744-0_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2743-3

  • Online ISBN: 978-1-0716-2744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics