Skip to main content

Evaluation of the Effects of CCN4 on Pancreatic Beta Cell Proliferation

  • Protocol
  • First Online:
CCN Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2582))

  • 649 Accesses

Abstract

Expanding the number of insulin-producing beta cells through reactivation of their replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Using antibody arrays, we identified CCN4/Wisp1 as a circulating factor enriched in preweaning mice, a period in which beta cells exhibit a dramatic increase in number. This finding led us to investigate the involvement of CCN4 in beta cell proliferation. We demonstrated that CCN4 promotes adult beta cell proliferation in vitro in cultured isolated islets, and in vivo in islets transplanted into the anterior chamber of the eye. In this chapter, we present the methodology that was used to study proliferation in both settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang P, Fiaschi-Taesch NM, Vasavada RC, Scott DK, García-Ocaña A, Stewart AF (2015) Diabetes mellitus--advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 11(4):201–212

    Article  CAS  PubMed  Google Scholar 

  2. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    Article  CAS  PubMed  Google Scholar 

  3. Song G, Nguyen DT, Pietramaggiori G, Scherer S, Chen B, Zhan Q, Ogawa R, Yannas IV, Wagers AJ, Orgill DP et al (2010) Use of the parabiotic model in studies of cutaneous wound healing to define the participation of circulating cells. Wound Repair Regen 18:426–432

    Article  PubMed  PubMed Central  Google Scholar 

  4. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM, Fainberg N, Ding Z, Eggel A et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Riley KG, Pasek RC, Maulis MF, Peek J, Thorel F, Brigstock DR, Herrera PL, Gannon M (2015) Connective tissue growth factor modulates adult β-cell maturity and proliferation to promote β-cell regeneration in mice. Diabetes 64:1284–1298

    Article  CAS  PubMed  Google Scholar 

  6. Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3:163–165

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stephens S, Palmer J, Konstantinova I, Pearce A, Jarai G, Day E (2015) A functional analysis of Wnt inducible signalling pathway protein −1 (WISP-1/CCN4). J Cell Commun Signal 9:63–72

    Article  PubMed  PubMed Central  Google Scholar 

  8. Viloria K, Hill NJ (2016) Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol Concepts 7(2):117–132

    Article  CAS  PubMed  Google Scholar 

  9. Gerarduzzi C, Hartmann U, Leask A, Drobetsky E (2020) The matrix revolution:matricellular proteins and restructuring of the cancer microenvironment. Cancer Res 80(13):2705–2717

    Article  CAS  PubMed  Google Scholar 

  10. Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    Article  CAS  PubMed  Google Scholar 

  11. Yeger H, Perbal B (2007) The CCN family of genes: a perspective on CCN biology and therapeutic potential. J Cell Commun Signal 1:159–164

    Article  PubMed  Google Scholar 

  12. Shi W, Yin J, Chen Z, Chen H, Liu L, Meng Z (2014) Cyr61 promotes growth of pancreatic carcinoma via nuclear exclusion of p27. Tumor Biol 35:11147–11151

    Article  CAS  Google Scholar 

  13. Fernandez-Ruiz R, García A, Esteban Y, Mir J, Serra Navarro B, Fontcuberta-PiSunyer M, Broca C, Armanet M, Wojtusciszyn A, Kram V, Young MF, Vidal J, Gomis R, Gasa R (2020) Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 11:5982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maeda A, Ono M, Holmbeck K, Li L, Kilts TM, Kram V, Noonan ML, Yoshioka Y, McNerny EMB, Tantillo MA et al (2015) WNT1-Induced Secreted Protein-1 (Wisp1), a novel regulator of bone turnover and Wnt signaling. J Biol Chem 290:14004–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murahovschi V, Pivovarova O, Ilkavets I, Dmitrieva RM, Döcke S, Keyhani-Nejad F, Gögebakan Ö, Osterhoff M, Kemper M, Hornemann S et al (2015) WISP1 is a novel adipokine linked to inflammation in obesity. Diabetes 64:856–866

    Article  CAS  PubMed  Google Scholar 

  16. Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM (2021) Hepatic Wnt1 inducible signaling pathway protein 1 (WISP-1/CCN4) associates with markers of liver fibrosis in severe obesity. Cell 10(5):1048

    Article  CAS  Google Scholar 

  17. Corbin KL, West HL, Brodsky S, Whitticar NB, Kock WJ, Nunemaker CS (2021) A practical guide to rodent isolation and assessment revisited. Biol Proced Online 23:7. https://doi.org/10.1186/s12575-021-00143-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Speier S, Nyqvist D, Köhler M, Caicedo A, Leibiger IB, Berggren PO (2008) Noninvasive high-resolution in vivo imaging of cell biology in the anterior chamber of the mouse eye. Nat Protoc 3(8):1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Villarreal D, Pradhan G, Wu CS, Allred CD, Guo S, Sun Y (2019) A simple high efficiency protocol for pancreatic islet isolation from mice. J Vis Exp (150):e57048

    Google Scholar 

  20. Zmuda EJ, Powell CA, Hai T (2011) A method for murine islet isolation and subcapsular kidney transplantation. J Vis Exp (50):e2096. https://doi.org/10.3791/2096

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Gasa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fernández-Ruiz, R., Gasa, R. (2023). Evaluation of the Effects of CCN4 on Pancreatic Beta Cell Proliferation. In: Takigawa, M. (eds) CCN Proteins. Methods in Molecular Biology, vol 2582. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2744-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2744-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2743-3

  • Online ISBN: 978-1-0716-2744-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics