Skip to main content

DNA Methylation Analysis Using Bisulfite Pyrosequencing

  • Protocol
  • First Online:
Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2577))

Abstract

Pyrosequencing is a DNA sequencing-by-synthesis technique that can quantitatively detect single-nucleotide polymorphisms (SNPs). With pyrosequencing, the level of DNA methylation can be calculated according to the ratio of artificial cytosine/thymine SNPs produced by bisulfite conversion at each CpG site. This analysis method provides a reproducible and accurate measurement of methylation levels at CpG sites near sequencing primers with high quantitative resolution. DNA methylation plays an important role in mammalian development and cellular physiology; alterations in DNA methylation patterns have been implicated in several common diseases as well as cancers and imprinting disorders. Evaluating DNA methylation levels via pyrosequencing is useful for identifying biomarkers that could help with the diagnosis, prognosis, treatment selection, and onset risk assessment for several diseases. We describe the principles of pyrosequencing and detail a bisulfite pyrosequencing protocol based on our experience and the PyroMark Q24 User Manual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gibney ER, Nolan CM (2010) Epigenetics and gene expression. Heredity (Edinb) 105(1):4–13. https://doi.org/10.1038/hdy.2010.54

    Article  CAS  Google Scholar 

  2. Hanna CW, Demond H, Kelsey G (2018) Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 24(5):556–576. https://doi.org/10.1093/humupd/dmy021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fang H, Disteche CM, Berletch JB (2019) X inactivation and escape: epigenetic and structural features. Front Cell Dev Biol 7:219. https://doi.org/10.3389/fcell.2019.00219

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pappalardo XG, Barra V (2021) Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 14(1):25. https://doi.org/10.1186/s13072-021-00400-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. https://doi.org/10.1038/ng1089

    Article  CAS  PubMed  Google Scholar 

  6. Higashimoto K, Joh K, Soejima H (2017) Genomic imprinting syndromes and cancer. In: Kaneda A, Tsukada Y (eds) DNA and histone methylation as cancer targets. Cancer drug discovery and development. Humana Press, New York, pp 297–344. https://doi.org/10.1007/978-3-319-59786-7

    Chapter  Google Scholar 

  7. Ortiz-Barahona V, Joshi RS, Esteller M (2020) Use of DNA methylation profiling in translational oncology. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.12.011

  8. Jin Z, Liu Y (2018) DNA methylation in human diseases. Genes Dis 5(1):1–8. https://doi.org/10.1016/j.gendis.2018.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Y (2021) Modern epigenetics methods in biological research. Methods 187:104–113. https://doi.org/10.1016/j.ymeth.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  10. Sun Z, Cunningham J, Slager S, Kocher JP (2015) Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 7(5):813–828. https://doi.org/10.2217/epi.15.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poulin M, Zhou JY, Yan L, Shioda T (2018) Pyrosequencing methylation analysis. Methods Mol Biol 1856:283–296. https://doi.org/10.1007/978-1-4939-8751-1_17

    Article  CAS  PubMed  Google Scholar 

  12. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2(9):2265–2275. https://doi.org/10.1038/nprot.2007.314

    Article  CAS  PubMed  Google Scholar 

  13. Delaney C, Garg SK, Yung R (2015) Analysis of DNA methylation by pyrosequencing. Methods Mol Biol 1343:249–264. https://doi.org/10.1007/978-1-4939-2963-4_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sulewska A, Niklinska W, Kozlowski M, Minarowski L, Naumnik W, Niklinski J, Dabrowska K, Chyczewski L (2007) Detection of DNA methylation in eucaryotic cells. Folia Histochem Cytobiol 45(4):315–324

    CAS  PubMed  Google Scholar 

  15. Kristensen LS, Hansen LL (2009) PCR-based methods for detecting single-locus DNA methylation biomarkers in cancer diagnostics, prognostics, and response to treatment. Clin Chem 55(8):1471–1483. https://doi.org/10.1373/clinchem.2008.121962

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Japan Society for the Promotion of Science, KAKENHI grant numbers JP21K19451 (HS), JP20H03643 (HS), JP20K08183 (KH), and JP19K06451 (SH); the Japan Agency for Medical Research and Development, grant numbers JP20ek0109486 and JP20ek0109489 (HS); and the Ministry of Health, Labor and Welfare Program, grant number JP20FC1046 (HS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Higashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Higashimoto, K., Hara, S., Soejima, H. (2023). DNA Methylation Analysis Using Bisulfite Pyrosequencing. In: Hatada, I., Horii, T. (eds) Epigenomics. Methods in Molecular Biology, vol 2577. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2724-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2724-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2723-5

  • Online ISBN: 978-1-0716-2724-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics