Skip to main content

Receptor-Binding Specificity of Influenza Viruses

  • Protocol
  • First Online:
Glycovirology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2556))

Abstract

Influenza A virus infection begins with the attachment of virus particles to sialic acid-containing receptors on the surface of host cells. This attachment is mediated by the viral surface glycoprotein hemagglutinin (HA). Influenza A viruses have a wide host range, meaning they are able to infect many mammal and bird species. Influenza pandemics have been caused by viruses that contain genes from avian influenza viruses. Therefore, the infection of humans with avian influenza viruses, including avian H5Nx and H7Nx viruses, poses a huge threat to public health. These avian influenza viruses can transmit directly to humans from infected poultry, but do not spread easily among people, in part, due to differences in the receptor-binding specificities of human and avian influenza viruses. Therefore, conversion from avian- to human-type receptor-binding specificity is widely believed to be necessary for the efficient transmission of avian influenza viruses among humans. Accordingly, constant monitoring of the receptor-binding specificity of avian influenza viruses is important. In this chapter, we describe the protocol for assessing the receptor-binding specificity of influenza A viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laver WG, Webster RG (1979) Ecology of influenza viruses in lower mammals and birds. Br Med Bull 35:29–33

    Article  CAS  Google Scholar 

  2. Long JS, Mistry B, Haslam SM, Barclay WS (2019) Host and viral determinants of influenza A virus species specificity. Nat Rev Microbiol 17:67–81

    Article  CAS  Google Scholar 

  3. World Health Organization. Regional Office for the Western Pacific (2021) Avian influenza weekly update 2021. WHO Regional Office for the Western Pacific. https://apps.who.int/iris/handle/10665/341148

  4. Connor RJ, Kawaoka Y, Webster RG, Paulson JC (1994) Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17–23

    Article  CAS  Google Scholar 

  5. Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373

    Article  CAS  Google Scholar 

  6. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC et al (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355:1143–1155

    Article  CAS  Google Scholar 

  7. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436

    Article  CAS  Google Scholar 

  8. van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD et al (2006) H5N1 virus attachment to lower respiratory tract. Science 312:399

    Article  Google Scholar 

  9. Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR et al (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373

    Article  CAS  Google Scholar 

  10. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR et al (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74:8502–8512

    Article  CAS  Google Scholar 

  11. Ozawa M, Victor ST, Taft AS, Yamada S, Li C, Hatta M et al (2011) Replication-incompetent influenza A viruses that stably express a foreign gene. J Gen Virol 92:2879–2888

    Article  CAS  Google Scholar 

  12. Victor ST, Watanabe S, Katsura H, Ozawa M, Kawaoka Y (2012) A replication-incompetent PB2-knockout influenza A virus vaccine vector. J Virol 86:4123–4128

    Article  CAS  Google Scholar 

  13. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289

    Article  CAS  Google Scholar 

  14. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P et al (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A 96:9345–9350

    Article  CAS  Google Scholar 

  15. Horimoto T, Murakami S, Muramoto Y, Yamada S, Fujii K, Kiso M et al (2007) Enhanced growth of seed viruses for H5N1 influenza vaccines. Virology 366:23–27

    Article  CAS  Google Scholar 

  16. Murakami S, Horimoto T, Mai LQ, Nidom CA, Chen H, Muramoto Y et al (2008) Growth determinants for H5N1 influenza vaccine seed viruses in MDCK cells. J Virol 82:10502–10509

    Article  CAS  Google Scholar 

  17. Ping J, Lopes TJS, Nidom CA, Ghedin E, Macken CA, Fitch A et al (2015) Development of high-yield influenza A virus vaccine viruses. Nat Commun 6:8148

    Article  Google Scholar 

  18. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K et al (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428

    Article  CAS  Google Scholar 

  19. Kobayashi H, Iwatsuki-Horimoto K, Kiso M, Uraki R, Ichiko Y, Takimoto T et al (2013) A replication-incompetent influenza virus bearing the HN glycoprotein of human parainfluenza virus as a bivalent vaccine. Vaccine 31:6239–6246

    Article  CAS  Google Scholar 

  20. Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K et al (2017) A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe 22:615–626

    Article  CAS  Google Scholar 

  21. Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG, García-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. J Virol 73:9679–9682

    Article  CAS  Google Scholar 

  22. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97:6108–6113

    Article  CAS  Google Scholar 

  23. Chambers BS, Li Y, Hodinka RL, Hensley SE (2014) Recent H3N2 influenza virus clinical isolates rapidly acquire hemagglutinin or neuraminidase mutations when propagated for antigenic analyses. J Virol 88:10986–10989

    Article  Google Scholar 

  24. Lin Y, Wharton SA, Whittaker L, Dai M, Ermetal B, Lo J et al (2017) The characteristics and antigenic properties of recently emerged subclade 3C.3a and 3C.2a human influenza A(H3N2) viruses passaged in MDCK cells. Influenza Other Respir Viruses 11:263–274

    Article  CAS  Google Scholar 

  25. Takada K, Kawakami C, Fan S, Chiba S, Zhong G, Gu C et al (2019) A humanized MDCK cell line for the efficient isolation and propagation of human influenza viruses. Nat Microbiol 4:1268–1273

    Article  CAS  Google Scholar 

  26. Hatakeyama S, Sakai-Tagawa Y, Kiso M, Goto H, Kawakami C, Mitamura K et al (2005) Enhanced expression of an alpha2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. J Clin Microbiol 43:4139–4146

    Article  CAS  Google Scholar 

  27. Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk HD (2003) Overexpression of the alpha-2,6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virol 77:8418–8425

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Susan Watson for scientific editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kawaoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imai, M., Takada, K., Kawaoka, Y. (2022). Receptor-Binding Specificity of Influenza Viruses. In: Suzuki, Y. (eds) Glycovirology. Methods in Molecular Biology, vol 2556. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2635-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2635-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2634-4

  • Online ISBN: 978-1-0716-2635-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics