Skip to main content

Modeling Protein Complexes and Molecular Assemblies Using Computational Methods

  • Protocol
  • First Online:
Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2553))

  • 2182 Accesses

Abstract

Many biological molecules are assembled into supramolecular complexes that are necessary to perform functions in the cell. Better understanding and characterization of these molecular assemblies are thus essential to further elucidate molecular mechanisms and key protein-protein interactions that could be targeted to modulate the protein binding affinity or develop new binders. Experimental access to structural information on these supramolecular assemblies is often hampered by the size of these systems that make their recombinant production and characterization rather difficult. Computational methods combining both structural data, molecular modeling techniques, and sequence coevolution information can thus offer a good alternative to gain access to the structural organization of protein complexes and assemblies. Herein, we present some computational methods to predict structural models of the protein partners, to search for interacting regions using coevolution information, and to build molecular assemblies. The approach is exemplified using a case study to model the succinate-quinone oxidoreductase heterocomplex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J (2016) Natural supramolecular protein assemblies. Chem Soc Rev 45:24–39

    Article  CAS  PubMed  Google Scholar 

  2. Berggård T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7:2833–2842

    Article  PubMed  Google Scholar 

  3. Soni N, Madhusudhan MS (2017) Computational modeling of protein assemblies. Curr Opin Struct Biol 44:179–189

    Article  CAS  PubMed  Google Scholar 

  4. Sweetlove LJ, Fernie AR (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 9:2136

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chiesa G, Kiriakov S, Khalil AS (2020) Protein assembly systems in natural and synthetic biology. BMC Biol 18:35

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang Y, Fernie AR (2021) Stable and temporary enzyme complexes and metabolons involved in energy and redox metabolism. Antioxid Redox Signal 35:788–807

    Article  CAS  PubMed  Google Scholar 

  7. Rao VS, Srinivas K, Sujini GN, Kumar GNS (2014) Protein-protein interaction detection: methods and analysis. Int J Proteomics 2014:147648

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu F, Minteer S (2015) Krebs cycle metabolon: structural evidence of substrate channeling revealed by cross-linking and mass spectrometry. Angew Chem Int Ed Engl 54:1851–1854

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D (2020) Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci U S A 117:1496–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koonin EV, Wolf YI, Karev GP (2002) The structure of the protein universe and genome evolution. Nature 420:218–223

    Article  CAS  PubMed  Google Scholar 

  11. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature. https://doi.org/10.1038/s41586-021-03819-2

  12. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9:56–68

    Article  CAS  PubMed  Google Scholar 

  13. Chung SY, Subbiah S (1996) A structural explanation for the twilight zone of protein sequence homology. Structure 4:1123–1127

    Article  CAS  PubMed  Google Scholar 

  14. Heilmann N, Wolf M, Kozlowska M, Sedghamiz E, Setzler J, Brieg M et al (2020) Sampling of the conformational landscape of small proteins with Monte Carlo methods. Sci Rep 10:18211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Geng H, Chen F, Ye J, Jiang F (2019) Applications of molecular dynamics simulation in structure prediction of peptides and proteins. Comput Struct Biotechnol J 17:1162–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  17. Pieper U, Webb BM, Dong GQ, Schneidman-Duhovny D, Fan H, Kim SJ et al (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42:D336–D346

    Article  CAS  PubMed  Google Scholar 

  18. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA et al (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol 13:e1005659

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pereira J, Simpkin AJ, Hartmann MD, Rigden DJ, Keegan RM, Lupas AN (2021) High-accuracy protein structure prediction in CASP14. Proteins. https://doi.org/10.1002/prot.26171

  25. Mirdita M, Ovchinnikov S, Steinegger M (2021) ColabFold - Making protein folding accessible to all bioRxiv. p. 2021.08.15.456425. https://doi.org/10.1101/2021.08.15.456425

  26. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A et al (2021) Highly accurate protein structure prediction for the human proteome. Nature. https://doi.org/10.1038/s41586-021-03828-1

  27. Lovell SC, Robertson DL (2010) An integrated view of molecular coevolution in protein--protein interactions. Mol Biol Evol 27:2567–2575

    Article  CAS  PubMed  Google Scholar 

  28. Atchley WR, Wollenberg KR, Fitch WM, Terhalle W, Dress AW (2000) Correlations among amino acid sites in bHLH protein domains: an information theoretic analysis. Mol Biol Evol 17:164–178

    Article  CAS  PubMed  Google Scholar 

  29. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R et al (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6:e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hopf TA, Schärfe CPI, Rodrigues JPGLM, Green AG, Kohlbacher O, Sander C et al (2014) Sequence co-evolution gives 3D contacts and structures of protein complexes. elife 3. https://doi.org/10.7554/eLife.03430

  31. Clark GW, Dar V-U-N, Bezginov A, Yang JM, Charlebois RL, Tillier ERM (2011) Using coevolution to predict protein-protein interactions. Methods Mol Biol 781:237–256

    Article  CAS  PubMed  Google Scholar 

  32. Green AG, Elhabashy H, Brock KP, Maddamsetti R, Kohlbacher O, Marks DS (2021) Large-scale discovery of protein interactions at residue resolution using co-evolution calculated from genomic sequences. Nat Commun 12:1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cong Q, Anishchenko I, Ovchinnikov S, Baker D (2019) Protein interaction networks revealed by proteome coevolution. Science 365:185–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iserte J, Simonetti FL, Zea DJ, Teppa E, Marino-Buslje C (2015) I-COMS: Interprotein-COrrelated mutations server. Nucleic Acids Res 43:W320–W325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87

    Article  CAS  PubMed  Google Scholar 

  36. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12:255–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ritchie DW, Kozakov D, Vajda S (2008) Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions. Bioinformatics 24:1865–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ritchie DW, Kemp GJ (2000) Protein docking using spherical polar Fourier correlations. Proteins 39:178–194

    Article  CAS  PubMed  Google Scholar 

  39. Garzon JI, Lopéz-Blanco JR, Pons C, Kovacs J, Abagyan R, Fernandez-Recio J et al (2009) FRODOCK: a new approach for fast rotational protein–protein docking. Bioinformatics 25:2544–2551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Christoffer C, Chen S, Bharadwaj V, Aderinwale T, Kumar V, Hormati M et al (2021) LZerD webserver for pairwise and multiple protein–protein docking. Nucleic Acids Res 49:W359–W365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dominguez C, Boelens R, Bonvin AMJ (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc:1731–1737. https://doi.org/10.1021/ja026939x

  42. Cheng TM-K, Blundell TL, Fernandez-Recio J (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins 68:503–515

    Article  CAS  PubMed  Google Scholar 

  43. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086

    Article  CAS  PubMed  Google Scholar 

  44. Pierce B, Weng Z (2008) A combination of rescoring and refinement significantly improves protein docking performance. Proteins 72:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11:3623–3648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405

    Article  CAS  PubMed  Google Scholar 

  47. Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014) MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers. Bioinformatics 30:3281–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu H, Lu L, Skolnick J (2003) Development of unified statistical potentials describing protein-protein interactions. Biophys J 84:1895–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang S-Y, Zou X (2008) An iterative knowledge-based scoring function for protein-protein recognition. Proteins 72:557–579

    Article  CAS  PubMed  Google Scholar 

  50. Mezei M (2017) Rescore protein-protein docked ensembles with an interface contact statistics. Proteins 85:235–241

    Article  CAS  PubMed  Google Scholar 

  51. Khashan R, Zheng W, Tropsha A (2012) Scoring protein interaction decoys using exposed residues (SPIDER): a novel multibody interaction scoring function based on frequent geometric patterns of interfacial residues. Proteins 80:2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406

    Article  CAS  PubMed  Google Scholar 

  53. Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y (2009) Consensus scoring for enriching near-native structures from protein-protein docking decoys. Proteins 75:397–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Feliu E, Aloy P, Oliva B (2011) On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking. Protein Sci 20:529–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vreven T, Hwang H, Weng Z (2011) Integrating atom-based and residue-based scoring functions for protein-protein docking. Protein Sci 20:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Andreani J, Faure G, Guerois R (2013) InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics 29:1742–1749

    Article  CAS  PubMed  Google Scholar 

  57. Yu J, Andreani J, Ochsenbein F, Guerois R (2017) Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35. Proteins 85:378–390

    Article  CAS  PubMed  Google Scholar 

  58. Oliva R, Vangone A, Cavallo L (2013) Ranking multiple docking solutions based on the conservation of inter-residue contacts. Proteins 81:1571–1584

    Article  CAS  PubMed  Google Scholar 

  59. Oliva R, Chermak E, Cavallo L (2015) Analysis and ranking of protein-protein docking models using inter-residue contacts and inter-molecular contact maps. Molecules 20:12045–12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vangone A, Cavallo L, Oliva R (2013) Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models. Proteins 81:2210–2220

    Article  CAS  PubMed  Google Scholar 

  61. Chermak E, Petta A, Serra L, Vangone A, Scarano V, Cavallo L et al (2015) CONSRANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Bioinformatics 31:1481–1483

    Article  CAS  PubMed  Google Scholar 

  62. Chermak E, De Donato R, Lensink MF, Petta A, Serra L, Scarano V et al (2016) Introducing a clustering step in a consensus approach for the scoring of protein-protein docking models. PLoS One 11:e0166460

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lensink MF, Méndez R, Wodak SJ (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins 69:704–718

    Article  CAS  PubMed  Google Scholar 

  64. Lensink MF, Velankar S, Wodak SJ (2017) Modeling protein-protein and protein-peptide complexes: CAPRI 6th edition. Proteins 85:359–377

    Article  CAS  PubMed  Google Scholar 

  65. Lensink MF, Wodak SJ (2010) Docking and scoring protein interactions: CAPRI 2009. Proteins 78:3073–3084

    Article  CAS  PubMed  Google Scholar 

  66. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30:1771–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S et al (2021) InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 49:W277–W284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Karami Y, Guyon F, De Vries S, Tufféry P (2018) DaReUS-Loop: accurate loop modeling using fragments from remote or unrelated proteins. Sci Rep 8:13673

    Article  PubMed  PubMed Central  Google Scholar 

  69. Horsefield R, Iwata S, Byrne B (2004) Complex II from a structural perspective. Curr Protein Pept Sci 5:107–118

    Article  CAS  PubMed  Google Scholar 

  70. Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704

    Article  CAS  PubMed  Google Scholar 

  71. Ruprecht J, Yankovskaya V, Maklashina E, Iwata S, Cecchini G (2009) Structure of Escherichia coli succinate:quinone oxidoreductase with an occupied and empty quinone-binding site. J Biol Chem 284:29836–29846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jérémy Esque or Isabelle André .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data SI1

(ZIP 2213 kb)

Data SI2

(ZIP 3 kb)

Data SI3

(ZIP 394 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Launay, R., Teppa, E., Esque, J., André, I. (2023). Modeling Protein Complexes and Molecular Assemblies Using Computational Methods. In: Selvarajoo, K. (eds) Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology. Methods in Molecular Biology, vol 2553. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2617-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2617-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2616-0

  • Online ISBN: 978-1-0716-2617-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics