Skip to main content

Dental Signatures as a Potential Biomarker of FASD

  • Protocol
  • First Online:
Fetal Alcohol Spectrum Disorder

Abstract

Fetal alcohol spectrum disorder (FASD) is the most common cause of neurodevelopmental disorders in children, affecting approximately 2–5% of the population, or as many as 700,000 Canadians. Sentinel craniofacial features present in children with FAS include a smooth or long philtrum, a thin upper lip, and short palpebral fissures, all of which are midline features and important clinical biomarkers of FAS. Developmental origins of midline craniofacial and dental malformations in individuals with FASD rest in important developmental pathways such as SHH, retinoic acid, cholesterol, and WNT. Furthermore, an association between midline craniofacial and neurodevelopmental malformations exists in FASD due to these developmental pathways. FASD sentinel facial features are developmentally based maxillary malformations. Teeth and jaw malformations, including cleft lip or cleft palate, are consistently reported among mouse models of prenatal alcohol exposure (PAE) and have also been casually observed in children with FASD, including a high incidence of maxillary malocclusions. Here, we examine whether dental (oral) signatures in the form of dental aberrations can be used collectively – such as in an index score – as a biomarker of FASD. This would create an interesting opportunity for dentists and other dental professionals to join front-line healthcare providers in a broadly reaching surveillance and early intervention of children with FASD. In this chapter we will review the shared craniofacial pathways that pattern the face, brain, and oral structures such as the teeth, jaws, and palate during development, examine the evidence supporting dental (oral) signatures of FASD, and consider the impact of the use of dental signatures as a potential biomarker for FASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popova S, Lange S, Shield K et al (2016) Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. Lancet 387:978–987. https://doi.org/10.1016/S0140-6736(15)01345-8

    Article  PubMed  Google Scholar 

  2. Chudley AE, Conry J, Cook JL et al (2005) Fetal alcohol spectrum disorder: Canadian guidelines for diagnosis. Can Med Assoc J 172:S1–S21

    Article  Google Scholar 

  3. May P, Chambers C, Kalberg W et al (2018) Prevalence of fetal alcohol spectrum disorders in 4 US communities. JAMA 319:474–482

    Article  Google Scholar 

  4. Stratton K, Howe C, Battaglia F (1996) Fetal alcohol syndrome: diagnosis and clinical evaluation of fetal alcohol syndrome. National Academy Press, Washington, DC

    Google Scholar 

  5. Astley SJ, Clarren SK (2000) Diagnosing the full spectrum of fetal alcohol-exposed individuals: introducing the 4-digit diagnostic code. Alcohol Alcohol 35:400–410. https://doi.org/10.1093/alcalc/35.4.400

    Article  CAS  PubMed  Google Scholar 

  6. Hoyme HE, Kalberg WO, Elliott AJ et al (2016) Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics 138:e20154256

    Article  Google Scholar 

  7. Cook JL, Green CR, Lilley CM et al (2016) Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ 188:191–197. https://doi.org/10.1503/cmaj.141593

    Article  PubMed  PubMed Central  Google Scholar 

  8. McLennan JD, Braunberger P (2017) A critique of the new Canadian fetal alcohol spectrum disorder guideline. J Can Acad Child Adolesc Psychiatry 26:179–183

    PubMed  PubMed Central  Google Scholar 

  9. del Campo M, Jones KL (2017) A review of the physical features of the fetal alcohol spectrum disorders. Eur J Med Genet 60:55–64. https://doi.org/10.1016/j.ejmg.2016.10.004

    Article  PubMed  Google Scholar 

  10. Godin EA, O’Leary-Moore SK, Khan AA et al (2010) Magnetic resonance microscopy defines ethanol-induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 7. Alcohol Clin Exp Res. https://doi.org/10.1111/j.1530-0277.2009.01071.x

  11. Hong M, Krauss RS (2012) Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002999

  12. Shen L, Ai H, Liang Y et al (2013) Effect of prenatal alcohol exposure on bony craniofacial development: a mouse MicroCT study. Alcohol 47:405–415. https://doi.org/10.1016/j.alcohol.2013.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Church MW, Eldis F, Blakley BW, Bawle EV (1997) Hearing, language, speech, vestibular, and dentofacial disorders in fetal alcohol syndrome. Alcohol Clin Exp Res 21:227–237

    Article  CAS  Google Scholar 

  14. Naidoo S, Harris A, Swanevelder S, Lombard C (2006) Foetal alcohol syndrome: a cephalometric analysis of patients and controls. Eur J Orthod 28:254–261. https://doi.org/10.1093/ejo/cji110

    Article  PubMed  Google Scholar 

  15. Streissguth AP, Clarren SK, Jones KL (1985) Natural history of the fetal alcohol syndrome: a 10-year follow-up of eleven patients. Lancet 326:85–91

    Article  Google Scholar 

  16. Munger RG, Romitti PA, Daack-Hirsch S et al (1996) Maternal alcohol use and risk of orofacial cleft birth defects. Teratology 54:27–33

    Article  CAS  Google Scholar 

  17. Blanck-lubarsch M, Flieger S, Feldmann R et al (2019) Malocclusion can give additional hints for diagnosis of fetal alcohol spectrum disorder. Alcohol Alcohol 54:56–61. https://doi.org/10.1093/alcalc/agy071

    Article  PubMed  Google Scholar 

  18. Twigg SRF, Wilkie AOM (2015) New insights into craniofacial malformations. Hum Mol Genet 24:R50–R59. https://doi.org/10.1093/hmg/ddv228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teven CM, Farina EM, Rivas J, Reid RR (2014) Fibroblast growth factor (FGF) signaling in development and skeletal diseases. Genes Dis 1:199–213. https://doi.org/10.1016/j.gendis.2014.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Twigg SRF, Healy C, Babbs C et al (2009) Skeletal analysis of the Fgfr3P244R mouse, a genetic model for the muenke craniosynostosis syndrome. Dev Dyn 238:331–342. https://doi.org/10.1002/dvdy.21790

    Article  CAS  PubMed  Google Scholar 

  21. Flaherty K, Singh N, Richtsmeier J (2016) Understanding craniosynostosis as a growth. Wiley Interdiscip Rev Dev Biol 5:429–459. https://doi.org/10.1002/wdev.227.UNDERSTANDING

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sanlaville D, Etchevers HC, Gonzales M et al (2006) Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet 43:211–217. https://doi.org/10.1136/jmg.2005.036160

    Article  CAS  PubMed  Google Scholar 

  23. Garg V, Yamagishi C, Hu T et al (2001) Tbx1, a DiGeorge syndrome candidate gene, is regulated by sonic hedgehog during pharyngeal arch development. Dev Biol 73:62–73. https://doi.org/10.1006/dbio.2001.0283

    Article  CAS  Google Scholar 

  24. Lewyllie A, Roosenboom J, Indencleef K et al (2017) A comprehensive craniofacial study of 22q11.2 deletion syndrome. J Dent Res 96:1386–1392. https://doi.org/10.1177/0022034517720630

    Article  CAS  PubMed  Google Scholar 

  25. Nowaczyk MJM, Wassif CA. Smith-Lemli-Opitz Syndrome. 1998 Nov 13 [Updated 2020 Jan 30]. In: Adam MP, Ardinger HH, Pagon RA et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2020. http://www.ncbi.nlm.nih.gov/books/

  26. Blassberg R, Macrae JI, Briscoe J et al (2016) Reduced cholesterol levels impair smoothened activation in Smith – Lemli – Opitz syndrome. Hum Mol Genet 25:693–705. https://doi.org/10.1093/hmg/ddv507

    Article  CAS  PubMed  Google Scholar 

  27. Dworkin S, Boglev Y, Owens H, Goldie S (2016) The role of sonic hedgehog in craniofacial patterning, morphogenesis and cranial neural crest survival. J Dev Biol 4:24. https://doi.org/10.3390/jdb4030024

    Article  PubMed Central  Google Scholar 

  28. Bale AE (2002) Hedgehog signaling and human disease. Annu Rev Genomics Hum Genet 3:47–65. https://doi.org/10.1146/annurev.genom.3.022502.103031

    Article  CAS  PubMed  Google Scholar 

  29. Croen LA, Shaw GM, Lammer EJ (2000) Risk factors for cytogenetically normal holoprosencephaly in California: a population-based case-control study. Am J Med Genet 90:320–325

    Article  CAS  Google Scholar 

  30. Astley S, Aylward E, Olsen H et al (2009) Magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res 33:1671–1689. https://doi.org/10.1002/ana.22528.Toll-like

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lipinski RJ, Hammond P, O’Leary-Moore SK et al (2012) Ethanol-induced face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS One. https://doi.org/10.1371/journal.pone.0043067

  32. Bronner ME, LeDouarin NM (2012) Development and evolution of the neural crest: an overview. Dev Biol 366:2–9. https://doi.org/10.1016/j.ydbio.2011.12.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong S-G (2014) Cranial neural crest: migratory cell behavior and regulatory networks. Exp Cell Res 325:90–95. https://doi.org/10.1016/j.yexcr.2014.03.015

    Article  CAS  PubMed  Google Scholar 

  34. Trainor PA, Krumlauf R (2000) Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nat Rev Neurosci 1:116–124. https://doi.org/10.1038/35039056

    Article  CAS  PubMed  Google Scholar 

  35. Basch ML, Bronner-Fraser M, García-Castro MI (2006) Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441:218–222. https://doi.org/10.1038/nature04684

    Article  CAS  PubMed  Google Scholar 

  36. Murdoch B, Delconte C, Garcia-Castro MI (2012) Pax7 lineage contributions to the mammalian neural crest. PLoS One 7:e41089. https://doi.org/10.1371/Citation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zalc A, Rattenbach R, Aurade F et al (2015) Pax3 and Pax7 play essential safeguard functions against environmental stress-induced birth defects article Pax3 and Pax7 play essential safeguard functions against environmental stress-induced birth defects. Dev Cell 33:56–66. https://doi.org/10.1016/j.devcel.2015.02.006

    Article  CAS  PubMed  Google Scholar 

  38. Dupe V, Matt N, Garnier J-M et al (2003) A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proc Natl Acad Sci 100:14036–14041. https://doi.org/10.1073/pnas.2336223100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besson A, Dowdy SF, Roberts JM (2008) Review CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14:159–169. https://doi.org/10.1016/j.devcel.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  40. Aoto K, Trainor PA (2015) Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet 24:698–713. https://doi.org/10.1093/hmg/ddu489

    Article  CAS  PubMed  Google Scholar 

  41. Wilkie AOM, Morriss-kay GM, Radcliffe J, Ox O (2001) Genetics of craniofacial development and malformation. Nat Genet 2:458–468

    Article  CAS  Google Scholar 

  42. Aoto K, Shikata Y, Higashiyama D et al (2008) Fetal ethanol exposure activates protein kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holoprosencephaly. Birth Defects Res A Clin Mol Teratol 231:224–231. https://doi.org/10.1002/bdra.20447

    Article  CAS  Google Scholar 

  43. Ahlgren SC, Thakur V, Bronner-Fraser M (2002) Sonic hedgehog rescues cranial neural crest from cell death induced by ethanol exposure. Proc Natl Acad Sci U S A 99:10476–10481. https://doi.org/10.1073/pnas.162356199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kietzman HW, Everson JL, Sulik KK, Lipinski RJ (2014) The teratogenic effects of prenatal ethanol exposure are exacerbated by sonic Hedgehog or Gli2 haploinsufficiency in the mouse. PLoS One 9:1–5. https://doi.org/10.1371/journal.pone.0089448

    Article  CAS  Google Scholar 

  45. Sarmah S, Muralidharan P, Marrs JA (2016) Embryonic ethanol exposure dysregulates BMP and notch signaling, leading to persistent atrio-ventricular valve defects in zebrafish. PLoS One 11:1–28. https://doi.org/10.1371/journal.pone.0161205

    Article  Google Scholar 

  46. Zhang P, Wang G, Lin Z et al (2017) Alcohol exposure induces chick craniofacial bone defects by negatively affecting cranial neural crest development. Toxicol Lett 281:53–64. https://doi.org/10.1016/j.toxlet.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  47. Shabtai Y, Fainsod A (2018) Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochem Cell Biol 96:148–160. https://doi.org/10.1139/bcb-2017-0132

    Article  CAS  PubMed  Google Scholar 

  48. Muralidharan P, Sarmah S, Marrs JA (2015) Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 49:149–163. https://doi.org/10.1016/j.alcohol.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  49. Serrano M, Han M, Brinez P, Linask KK (2010) Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol 203:75.e7–75.e15. https://doi.org/10.1016/j.ajog.2010.03.017

    Article  CAS  Google Scholar 

  50. Li Y, Yang H, Zdanowicz M et al (2007) Fetal alcohol exposure impairs hedgehog cholesterol modification and signaling. Lab Invest 87:231–240. https://doi.org/10.1038/labinvest.3700516

    Article  CAS  PubMed  Google Scholar 

  51. Schmidt L, Taiyab A, Melvin VS et al (2018) Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull. Dis Model Mech 11:dmm031526. https://doi.org/10.1242/dmm.031526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nie X, Luukko K, Kettunen P (2006) BMP signalling in craniofacial development. Int J Dev Biol 50:511–521. https://doi.org/10.1387/ijdb.052101xn

    Article  CAS  PubMed  Google Scholar 

  53. Bonilla-claudio M, Wang J, Bai Y et al (2012) Bmp signaling regulates a dose-dependent transcriptional program to control facial skeletal development. Development 719:709–719. https://doi.org/10.1242/dev.073197

    Article  CAS  Google Scholar 

  54. Yamagishi C, Yamagishi H, Maeda J et al (2006) Sonic hedgehog is essential for first pharyngeal arch development. Pediatr Res 59:349–354. https://doi.org/10.1203/01.pdr.0000199911.17287.3e

    Article  CAS  PubMed  Google Scholar 

  55. Wahl SE, Kennedy AE, Wyatt BH et al (2015) The role of folate metabolism in orofacial development and clefting. Dev Biol 405:108–122. https://doi.org/10.1016/j.ydbio.2015.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rhinn M, Dolle P (2012) Retinoic acid signalling during development. Development 139:843–858. https://doi.org/10.1242/dev.065938

    Article  CAS  PubMed  Google Scholar 

  57. Cunningham TJ, Duester G (2015) Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110–123. https://doi.org/10.1038/nrm3932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roux C, Wolf C, Mulliez N et al (2000) Role of cholesterol in embryonic development. Am J Clin Nutr 71:1270–1279

    Article  Google Scholar 

  59. Chiang C, Litingtung Y, Lee E et al (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407–413

    Article  CAS  Google Scholar 

  60. Heyne GW, Melberg CG, Doroodchi P et al (2015) Definition of critical periods for hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palatee0120517. PLoS One 10:1–14. https://doi.org/10.1371/journal.pone.0120517

    Article  CAS  Google Scholar 

  61. Abramyan J (2019) Hedgehog signaling and embryonic craniofacial disorders. J Dev Biol 7. https://doi.org/10.3390/JDB7020009

  62. Ming JE, Roessler E, Muenke M (1998) Human developmental disorders and the Sonic hedgehog pathway. Mol Med Today 4310:343–349

    Article  Google Scholar 

  63. Hu D, Helms JA (1999) The role of Sonic hedgehog in normal and abnormal craniofacial morphogenesis. Development 126:4873–4884

    Article  CAS  Google Scholar 

  64. Aoto K, Shikata Y, Imai H et al (2009) Mouse Shh is required for prechordal plate maintenance during brain and craniofacial morphogenesis. Dev Biol 327:106–120. https://doi.org/10.1016/j.ydbio.2008.11.022

    Article  CAS  PubMed  Google Scholar 

  65. Kiecker C, Niehrs C (2001) The role of prechordal mesendoderm in neural patterning Clemens Kiecker and Christof Niehrs. Curr Opin Neurobiol 11:27–33

    Article  CAS  Google Scholar 

  66. Kiecker C (2016) The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 415:314–325. https://doi.org/10.1016/j.ydbio.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  67. Xavier GM, Seppala M, Barrell W et al (2016) Hedgehog receptor function during craniofacial development. Dev Biol 415:198–215. https://doi.org/10.1016/j.ydbio.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  68. Yamada Y, Nagase T, Nagase M, Koshima I (2005) Gene expression changes of sonic hedgehog signaling cascade in a mouse embryonic model of fetal alcohol syndrome. J Craniofac Surg 16:1055–1061

    Article  Google Scholar 

  69. Yelin R, Kot H, Yelin D, Fainsod A (2007) Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 75:393–403

    Article  CAS  Google Scholar 

  70. Sidik A, Dixon G, Buckley DM et al (2021) Exposure to ethanol leads to midfacial hypoplasia in a zebrafish model of FASD via indirect interactions with the Shh pathway. BMC Biol 19:1–18. https://doi.org/10.1186/s12915-021-01062-9

    Article  CAS  Google Scholar 

  71. Beleza-Meireles A, Matoso E, Ramos L et al (2013) Cryptic 7q36.2q36.3 deletion causes multiple congenital eye anomalies and craniofacial dysmorphism. Am J Med Genet Part A 161:589–593. https://doi.org/10.1002/ajmg.a.35713

    Article  Google Scholar 

  72. Horn D, Tönnies H, Neitzel H et al (2004) Minimal clinical expression of the holoprosencephaly spectrum and of Currarino syndrome due to different cytogenetic rearrangements deleting the Sonic Hedgehog gene and the HLXB9 gene at 7q36.3. Am J Med Genet 128A:85–92. https://doi.org/10.1002/ajmg.a.30031

    Article  PubMed  Google Scholar 

  73. Linhares ND, Svartman M, Salgado MI et al (2014) Dental developmental abnormalities in a patient with subtelomeric 7q36 deletion syndrome may confirm a novel role for the SHH gene. Meta Gene 2:16–24. https://doi.org/10.1016/j.mgene.2013.10.005

    Article  PubMed  Google Scholar 

  74. Hall RK (2006) Solitary median maxillary central incisor (SMMCI) syndrome. Orphanet J Rare Dis 1:1–9. https://doi.org/10.1186/1750-1172-1-12

    Article  Google Scholar 

  75. Gurdon JB, Bourillot P-Y (2001) Morphogen gradient interpretation. Nature 413:797–803

    Article  CAS  Google Scholar 

  76. Pepinsky RB, Zeng C, Wen D et al (1998) Identification of a palmitic acid-modified form of human sonic hedgehog*. J Biol Chem 273:14037–14045

    Article  CAS  Google Scholar 

  77. Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054. https://doi.org/10.1074/jbc.274.17.12049

    Article  CAS  PubMed  Google Scholar 

  78. Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367. https://doi.org/10.1083/jcb.140.6.1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang P, Nedelcu D, Watanabe M et al (2016) Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell 166:1176–1187. https://doi.org/10.1016/j.cell.2016.08.003.Cellular

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yelin R, Schyr RBH, Kot H et al (2005) Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Dev Biol 279:193–204. https://doi.org/10.1016/j.ydbio.2004.12.014

    Article  CAS  PubMed  Google Scholar 

  81. Marrs JA, Clendenon SG, Ratcliffe DR et al (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 44:707–715. https://doi.org/10.1016/j.alcohol.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  82. Satiroglu-tufan NL, Tufan AC (2004) Amelioration of ethanol-induced growth retardation by all-trans-retinoic acid and α-tocopherol in shell-less culture of the chick embryo. Reprod Toxicol 18:407–412. https://doi.org/10.1016/j.reprotox.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  83. Hale LA, Tallafuss A, Yan Y-L et al (2006) Characterization of the retinoic acid receptor genes raraa, rarab and rarg during zebrafish development. Gene Expr Patterns 6:546–555. https://doi.org/10.1016/J.MODGEP.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  84. Kam RKT, Deng Y, Chen Y, Zhao H (2012) Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2:11. https://doi.org/10.1186/2045-3701-2-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Molotkova N, Molotkov A, Duester G (2007) Role of retinoic acid during forebrain development begins late when Raldh3 generates retinoic acid in the ventral subventricular zone. Dev Biol 303:601–610. https://doi.org/10.1016/j.ydbio.2006.11.035

    Article  CAS  PubMed  Google Scholar 

  86. Suzuki R, Shintani T, Sakuta H et al (2000) Identification of RALDH-3, a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina. Mech Dev 98:37–50. https://doi.org/10.1016/S0925-4773(00)00450-0

    Article  CAS  PubMed  Google Scholar 

  87. Chawla B, Schley E, Williams AL, Bohnsack BL (2016) Retinoic acid and Pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res Part B Dev Reprod Toxicol 107:126–135. https://doi.org/10.1002/bdrb.21177

    Article  CAS  Google Scholar 

  88. Johnson CS, Zucker RM, Sidney E et al (2007) Perturbation of retinoic acid (RA) –mediated limb development suggests a role for diminished RA signaling in the teratogenesis of ethanol. Birth Defects Res (Part A) 641:631–641. https://doi.org/10.1002/bdra.20385

    Article  CAS  Google Scholar 

  89. Shabtai Y, Bendelac L, Jubran H et al (2018) Acetaldehyde inhibits retinoic acid biosynthesis to mediate alcohol teratogenicity. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-017-18719-7

    Article  CAS  Google Scholar 

  90. Pflipsen M, Zenchenko Y (2017) Nutrition for oral health and oral manifestations of poor nutrition and unhealthy habits. Gen Dent 65:36–43

    PubMed  Google Scholar 

  91. Morkmued S, Laugel-Haushalter V, Mathieu E et al (2017) Retinoic acid excess impairs amelogenesis inducing enamel defects. Front Physiol 7:1–14. https://doi.org/10.3389/fphys.2016.00673

    Article  Google Scholar 

  92. Logan CY, Nusse R (2004) The WNT signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126

    Article  CAS  PubMed  Google Scholar 

  93. Clevers H (2006) Review Wnt / β –catenin signaling in development and disease. Cell 127:469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  94. Wang J, Sinha T, Wynshaw-boris A (2012) Wnt signaling in mammalian development: lessons from mouse genetics. Cold Spring Harb Perspect Biol 4:1–16

    Article  Google Scholar 

  95. Arenzana FJ, Iii MJC, Aijón J et al (2006) Teratogenic effects of ethanol exposure on zebrafish visual system development. Neurotoxicol Teratol 28:342–348. https://doi.org/10.1016/j.ntt.2006.02.001

    Article  CAS  PubMed  Google Scholar 

  96. Muralidharan P, Sarmah S, Zhou FC, Marrs JA (2013) Fetal alcohol spectrum disorder (FASD) associated neural defects: complex mechanisms and potential therapeutic targets. Brain Sci 3:964–991. https://doi.org/10.3390/brainsci3020964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarmah S, Marrs JA (2013) Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid. Dev Dyn 242:1184–1201. https://doi.org/10.1002/dvdy.24015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Swartz ME, Wells MB, Griffin M et al (2014) A screen of zebrafish mutants identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res 38:694–703. https://doi.org/10.1111/acer.12286

    Article  CAS  PubMed  Google Scholar 

  99. Ben LC, Fernandes Y, Eberhart JK (2016) Fishing for fetal alcohol spectrum disorders: zebrafish as a model for ethanol teratogenesis. Zebrafish 13:391–398. https://doi.org/10.1089/zeb.2016.1270

    Article  CAS  Google Scholar 

  100. Lauing KL, Roper PM, Nauer RK, Callaci JJ (2012) Acute alcohol exposure impairs fracture healing and deregulates β-catenin signaling in the fracture callus. Alcohol Clin Exp Res 36:2095–2103. https://doi.org/10.1111/j.1530-0277.2012.01830.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Debelak-kragtorp KA, Armant DR, Smith SM (2003) Ethanol-induced cephalic apoptosis requires phospholipase C-dependent intracellular calcium signaling. Alcohol Clin Exp Res 27:515–523. https://doi.org/10.1097/01.ALC.0000056615.34253.A8

    Article  CAS  PubMed  Google Scholar 

  102. Garic-Stankovic A, Hernandez MR, Chiang PJ et al (2005) Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G protein and a phospholipase Cβ-dependent Ca2+ transient. Alcohol Clin Exp Res 29:1237–1246. https://doi.org/10.1097/01.ALC.0000172460.05756.D9

    Article  CAS  PubMed  Google Scholar 

  103. Flentke GR, Garic A, Hernandez M, Smith SM (2014) CaMKII represses transcriptionally active β-catenin to mediate acute ethanol neurodegeneration and can phosphorylate β-catenin. J Neurochem 128:523–535. https://doi.org/10.1111/jnc.12464

    Article  CAS  PubMed  Google Scholar 

  104. Flentke GR, Smith SM (2018) The avian embryo as a model for fetal alcohol spectrum disorder. Biochem Cell Biol 96:98–106

    Article  CAS  Google Scholar 

  105. Garic A, Flentke GR, Amberger E et al (2011) CaMKII activation is a novel effector of alcohol’s neurotoxicity in neural crest stem/progenitor cells. J Neurochem 118:646–657. https://doi.org/10.1111/j.1471-4159.2011.07273.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Garic A, Berres ME, Smith SM (2014) High-throughput transcriptome sequencing identifies candidate genetic modifiers of vulnerability to fetal alcohol spectrum disorders. Alcohol Clin Exp Res 38:1874–1882. https://doi.org/10.1111/acer.12457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Reynolds K, Kumari P, Rincon LS et al (2019) Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 12:dmm037051. https://doi.org/10.1242/dmm.037051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ciruna B, Rossant J (2001) Mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell 1:37–49

    Article  CAS  Google Scholar 

  109. Blanck-Lubarsch M, Dirksen D, Feldmann R et al (2020) Children with fetal alcohol syndrome (FAS): 3D-analysis of palatal depth and 3D-metric facial length. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17010095

  110. Sant’Anna L, Tosello D (2006) Fetal alcohol syndrome and developing craniofacial and dental structures – a review. Orthod Craniofacial Res 9:172–185

    Article  Google Scholar 

  111. Blanck-Lubarsch M, Dirksen D, Feldmann R et al (2019) Tooth malformations, dmft index, speech impairment and oral habits in patients with fetal alcohol syndrome. Int J Environ Res Public Health 16:1–12. https://doi.org/10.3390/ijerph16224401

    Article  Google Scholar 

  112. Kelly JE, Sanchez M, Van Kirk LE (1973) An assessment of the occlusion of the teeth of children. Vital Heal Stat Ser 11:1–60

    Google Scholar 

  113. Thilander B, Myrberg N (1973) The prevalence of malocclusion in Swedish schoolchildren. Scand J Dent Res 81:12–20

    CAS  PubMed  Google Scholar 

  114. Al-Emran S, Wisth PJ, Böe OE (1990) Prevalence of malocclusion and need for orthodontic treatment in Saudi Arabia. Community Dent Oral Epidemiol 18:253–255. https://doi.org/10.1111/j.1600-0528.1990.tb00070.x

    Article  CAS  PubMed  Google Scholar 

  115. Dimberg L, Lennartsson B, Söderfeldt B, Bondemark L (2013) Malocclusions in children at 3 and 7 years of age: a longitudinal study. Eur J Orthod 35:131–137. https://doi.org/10.1093/ejo/cjr110

    Article  PubMed  Google Scholar 

  116. Kaminen-Ahola N, Ahola A, Maga M et al (2010) Maternal ethanol consumption alters the epigenotype and the phenotype of offspring in a mouse model. PLoS Genet 6. https://doi.org/10.1371/journal.pgen.1000811

  117. Astley SJ, Clarren SK (2001) Measuring the facial phenotype of individuals with prenatal alcohol exposure: correlations with brain dysfunction. Alcohol Alcohol 36:147–159. https://doi.org/10.1093/alcalc/36.2.147

    Article  CAS  PubMed  Google Scholar 

  118. Goodwin AF, Oberoi S, Landan M et al (2014) Craniofacial and dental development in Costello syndrome. Am J Med Genet A 0:1425–1430. https://doi.org/10.1002/ajmg.a.36475.Craniofacial

    Article  CAS  PubMed Central  Google Scholar 

  119. Sant’Anna LB, Tosello DO, Pasetto S (2005) Effects of maternal ethanol intake on immunoexpression of epidermal growth factor in developing rat mandibular molar. Arch Oral Biol 50:625–634. https://doi.org/10.1016/j.archoralbio.2004.12.010

    Article  CAS  PubMed  Google Scholar 

  120. Jackson IT, Hussain K (1990) Craniofacial and oral manifestations of fetal alcohol syndrome. Plast Reconstr Surg 85:505–512

    Article  CAS  Google Scholar 

  121. Guerrero J (1990) Morphologic mandible effects and of maternal of alcohol the offspring intake in on mice skull, tooth. Jpn J Oral Biol 32:460–469

    Article  Google Scholar 

  122. Goril S, Zalai D, Scott L, Shapiro CM (2016) Sleep and melatonin secretion abnormalities in children and adolescents with fetal alcohol spectrum disorders. Sleep Med 23:59–64. https://doi.org/10.1016/J.SLEEP.2016.06.002

    Article  PubMed  Google Scholar 

  123. Hanlon-Dearman A, Chen M, Olsen H (2017) Understanding and managing sleep disruption in children with FASD. Biochem Cell Biol 0. https://doi.org.uml.idm.oclc.org/10.1139/bcb-2017

Download references

Acknowledgments

We wish to thank Dr. Devi Atukorallaya, Dr. William Wiltshire, Dr. Robert Drummond, Dr. Fabio Pinheiro, Dr. Bradley Klus, and Molly Pind for enlightening and supportive discussions over the past 2 years that helped fully develop the hypothesis presented in this manuscript.

Funding

This work was funded in part by grants to GGH from the Canadian Institutes of Health Research (PJT-165847), Manitoba Liquor & Lotteries Corporation (55201 and 55380), and Kids Brain Health Network (48694).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey G. Hicks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Petrelli, B., Boorberg, N.B., Hicks, G.G. (2022). Dental Signatures as a Potential Biomarker of FASD. In: Chudley, A.E., Hicks, G.G. (eds) Fetal Alcohol Spectrum Disorder. Neuromethods, vol 188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2613-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2613-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2612-2

  • Online ISBN: 978-1-0716-2613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics