Skip to main content

Nutrition Intervention as a Preventative Approach to Fetal Alcohol Spectrum Disorder

  • Protocol
  • First Online:
Fetal Alcohol Spectrum Disorder

Part of the book series: Neuromethods ((NM,volume 188))

Abstract

Despite known dangers of the teratogenic effects of alcohol on the fetus, resulting in fetal alcohol spectrum disorder (FASD), alcohol consumption during gestation continues to be prevalent in Canada. Optimal maternal nutrition status during pregnancy plays a crucial role for healthy birth outcomes. Alcohol consumption disrupts nutrition utilization leading to primary and secondary malnutrition, by displacing macronutrient-derived calories for alcohol-derived calories and disturbing metabolic processes of macro- and micronutrients. Inadequate maternal nutrition leads to decreased maternal plasma volume expansion and poor placental perfusion, which consequently impedes access to nutrients from the mother to the fetus. This exacerbates alcohol’s teratogenic damage leading to a plethora of negative health outcomes for an infant and a mother. Thus, optimizing maternal nutrition status through an intervention or prevention is strategy paramount when prenatal alcohol consumption is reported or suspected. A number of reports on prenatal and postnatal nutrient supplementation provide promising evidence for the nutrition intervention as a prevention strategy to mitigate FASD outcomes. An overview of nutrients discussed in this chapter can be utilized as a basis for the development of targeted nutrition intervention for women at risk of carrying a child with FASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi R, Ziaei S, Parsay S (2017) Association between nutritional status with spontaneous abortion. Int J Fertil Steril 10:337–342

    CAS  PubMed  Google Scholar 

  2. Smith ER, Shankar AH, Wu LS-F et al (2010) Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: a meta-analysis of individual patient data from 17 randomized trials in low-income and middle-income countries. Lancet Glob Health 5:1090–1100

    Article  Google Scholar 

  3. Kaestel P, Michaelsen KF, Aaby P et al (2005) Effects of prenatal multimicronutrient supplements on birth weight and perinatal mortality: a randomized, controlled trial in Guinea-Bissau. Eur J Clin Nutr 59:1081–1089

    Article  CAS  PubMed  Google Scholar 

  4. Imbard A, Benoist JF, Blom HJ (2013) Neural tube defects, folic acid and methylation. Int J Environ Res Public Health 10:4352–4389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Campbell MK, Cartier S, Xie B et al (2012) Determinants of small for gestational age birth at term. Paediatr Perinat Epidemiol 26:525–533

    Article  PubMed  Google Scholar 

  6. Lu MS, He JR, Chen Q et al (2018) Maternal dietary patterns during pregnancy and preterm delivery: a large prospective cohort study in China. Nutr J 17:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Hulshoff HE, Hoek HW, Susser E et al (2000) Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 157:1170–1172

    Article  Google Scholar 

  8. Barker DJP (1992) Fetal and infant origins of adult disease: papers written by the Medical Research Council Environmental Epidemiology Unit, University of South Hampton, DJP Barker (Ed.). BMJ 2:217–295

    Google Scholar 

  9. Ballard MS, Sun M, Ko J (2012) Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome. Med Hypotheses 78:489–493

    Article  CAS  PubMed  Google Scholar 

  10. Connor KL, Kibschull M, Matysiak-Zablocki E et al (2019) Maternal malnutrition impacts placental morphology and transport. An origin for poor offspring growth and vulnerability to disease. J Nutr Biochem. https://doi.org/10.1101/727404

  11. Aherne W, Dunnill MS (1966) Quantitative aspects of placental structure. J Pathol 91:123–139

    Article  CAS  Google Scholar 

  12. Kadyrov M, Kosanke G, Kingdom J et al (1998) Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 352:1747–1749

    Article  CAS  PubMed  Google Scholar 

  13. Young JK, Giesbrecht HE, Eskin MN et al (2014) Nutrition implications for fetal alcohol spectrum disorder. Adv Nutr 5:675–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brocardo PS, Gil-Mohapel J, Christie BR (2011) The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res Rev 67:209–225

    Article  CAS  PubMed  Google Scholar 

  15. Shahrin L, Chisti M, Ahmed T (2015) Primary and secondary malnutrition. World Rev Nutr Diet 113:139–146

    Article  PubMed  Google Scholar 

  16. Lieber CS (2003) Relationships between nutrition, alcohol use, and liver disease. Alcohol Res Health 27:220–231

    PubMed  PubMed Central  Google Scholar 

  17. Nicolás JM, Fernández-Solà J, Fatjó F et al (2001) Increased circulating leptin levels in chronic alcoholism. Alcohol Clin Exp Res 25:83–88

    Article  PubMed  Google Scholar 

  18. Cigolini M, Targher G, Bergamo Andreis IA et al (1996) Moderate alcohol consumption and its relation to visceral fat and plasma androgens in healthy women. Int J Obes Relat Metab Disord 20:206–212

    CAS  PubMed  Google Scholar 

  19. Kloss O, Eskin NAM, Suh M (2018) Thiamin deficiency on fetal brain development with and without prenatal alcohol exposure. Biochem Cell Biol 96:169–177

    Article  CAS  PubMed  Google Scholar 

  20. Thomas JD, La Fiette MH, Quinn VR et al (2000) Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol 22:703–711

    Article  CAS  PubMed  Google Scholar 

  21. Martin PR, Mccool BA, Singleton CK (1993) Genetic sensitivity to thiamine deficiency and development of alcoholic organic brain disease. Alcohol Clin Exp Res 17:31–37

    Article  CAS  PubMed  Google Scholar 

  22. Ford SM, Pedersen CJ, Ford MR et al (2021) Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposure. Am J Physiol Heart Circ Physiol 320:H1313–H1320

    Article  CAS  PubMed Central  Google Scholar 

  23. Burd L, Blair J, Dropps K (2012) Prenatal alcohol exposure, blood alcohol concentrations and alcohol elimination rates for the mother, fetus and newborn. J Perinatol 32:652–659

    Article  CAS  PubMed  Google Scholar 

  24. Nogales F, Ojeda ML, Delgado MJ et al (2011) Effects of antioxidant supplementation on duodenal Se-Met absorption in ethanol-exposed rat offspring in vivo. J Reprod Dev 57:708–714

    Article  CAS  PubMed  Google Scholar 

  25. Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    Article  CAS  PubMed  Google Scholar 

  26. Hewitt AJ, Knuff AL, Jefkins MJ et al (2011) Chronic ethanol exposure and folic acid supplementation: fetal growth and folate status in the maternal and fetal guinea pig. Reprod Toxicol 31:500–506

    Article  CAS  PubMed  Google Scholar 

  27. Petrelli B, Bendelac L, Hicks GG et al (2019) Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis. https://doi.org/10.1002/dvg.23278

  28. Lloret-Vilaspasa F, Jansen HJ, de Roos K et al (2010) Retinoid signaling is required for information transfer from mesoderm to neuroectoderm during gastrulation. Int J Dev Biol 54:599–608

    Article  CAS  PubMed  Google Scholar 

  29. Deltour L, Ang HL, Duester G (1996) Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J 10:1050–1057

    Article  CAS  PubMed  Google Scholar 

  30. Clugston RD, Blaner WS (2012) The adverse effects of alcohol on vitamin a metabolism. Nutrients 4:356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cartwright M, Smith S (1995) Increased cell death and reduced neural crest cell numbers in ethanol-exposed embryos: partial basis for the fetal alcohol syndrome phenotype. Alcohol Clin Exp Res 19:378–386

    Article  CAS  PubMed  Google Scholar 

  32. Marrs JA, Clendenon SG, Ratcliffe DR et al (2010) Zebrafish fetal alcohol syndrome model: effects of ethanol are rescued by retinoic acid supplement. Alcohol 44:707–715

    Article  CAS  PubMed  Google Scholar 

  33. Sarmah S, Marrs JA (2013) Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid. Dev Dyn 242:1184–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goez HR, Scott O, Hasal S (2011) Fetal exposure to alcohol, developmental brain anomaly, and vitamin A deficiency: a case report. J Child Neurol 26:231–234

    Article  PubMed  Google Scholar 

  35. Sharma SC, Bonnar J, Dostalova L (1986) Comparison of blood levels of vitamin A, β-carotene and vitamin E in abruptio placentae with normal pregnancy. Int J Vitam Nutr Res 56:39

    Google Scholar 

  36. Ghebremeskel K, Burns L, Burden TJ (1994) Vitamin A and related essential nutrients in cord blood: relationships with anthropometric measurements at birth. Early Hum Dev 39:177–188

    Article  CAS  PubMed  Google Scholar 

  37. Institute of Medicine (IOM) (2014) Dietary reference intakes (DRIs). National Academies Press, Washington, DC. http://iom.edu/Activities/Nutrition/SummaryDRIs/~/media/Files/Activity%20Files/Nutrition/DRIs/New%20Material/5DRI%20Values%20SummaryTables%2014.pdf. Accessed 28 May 2019

    Google Scholar 

  38. Guerin P, El Mouatassim S, Menezo Y (2001) Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 7:175–189

    Article  CAS  PubMed  Google Scholar 

  39. Jurisicova A, Varmuza S, Casper RF (1996) Programmed cell death and human embryo fragmentation. Mol Hum Reprod 2:93–98

    Article  CAS  PubMed  Google Scholar 

  40. Dennery PA (2004) Role of redox in fetal development and neonatal diseases. Antioxid Redox Signal 6:147–153

    Article  CAS  PubMed  Google Scholar 

  41. Marino MD, Aksenov MY, Kelly SJ (2004) Vitamin E protects against alcohol induced cell loss and oxidative stress in the neonatal rat hippocampus. Int J Dev Neurosci 22:363–377

    Article  CAS  PubMed  Google Scholar 

  42. Heaton MB, Mitchell JJ, Paiva M (2000) Amelioration of ethanol-induced neurotoxicity in the neonatal rat central nervous system by antioxidant therapy. Alcohol Clin Exp Res 24:512–518

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell JJ, Paiva M, Heaton MB (1999) The antioxidants vitamin E and b-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol 17:163–168

    Article  CAS  PubMed  Google Scholar 

  44. May JM (2012) Vitamin C transport and its role in the central nervous system. Subcell Biochem 56:85–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tveden-Nyborg P, Vogt L, Schjoldager JG et al (2012) Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS One. https://doi.org/10.1371/journal.pone.0048488

  46. Baines M (1982) Vitamin C and exposure to alcohol. Int J Vitam Nutr Res Suppl 23:287–293

    CAS  PubMed  Google Scholar 

  47. Fazio V, Flint DM, Wahlqvist ML (1981) Acute effects of alcohol on plasma ascorbic acid in healthy subjects. Am J Clin Nutr 34:2394–2396

    Article  CAS  PubMed  Google Scholar 

  48. Peng Y, Kwok KHH, Yang P, Ng SSM, Liu J, Wong OG, He M-L, Kung H-F, Lin MCM (2005) Ascorbic acid inhibits ROS production, NF-κB activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology 48(3):426–434

    Article  CAS  PubMed  Google Scholar 

  49. Sprince H, Parker CM, Smith GG et al (1975) Protective action of ascorbic acid and sulfur compounds against acetaldehyde toxicity: implications in alcoholism and smoking. Agents Actions 5:164–173

    Article  CAS  PubMed  Google Scholar 

  50. Ginter E, Zloch Z, Ondreicka R (1998) Influence of vitamin C status on ethanol metabolism in guinea-pigs. Physiol Res 47:137–141

    CAS  PubMed  Google Scholar 

  51. Carpenter KJ (2000) Beriberi, white rice, and vitamin B: a disease, a cause, and a cure. University of California Press, Berkeley

    Book  Google Scholar 

  52. Reddy TS, Ramakrishnan CV (1982) Effects of maternal thiamine deficiency on the lipid composition of rat whole brain, gray matter and white matter. Neurochem Int 6:495–499

    Google Scholar 

  53. Oliveira FA, Galan TD, Ribeiro AM et al (2007) Thiamine deficiency during pregnancy leads to cerebellar neuronal death in rat offspring: role of voltage-dependent K+ channels. Brain Res 1134:79–86

    Article  CAS  PubMed  Google Scholar 

  54. Heinze T, Weber W (1990) Determination of thiamine (vitamin B1) in maternal blood during normal pregnancies and pregnancies with intrauterine growth retardation. Z Ernährungswiss 29:39–46

    Article  CAS  PubMed  Google Scholar 

  55. McLaren DS, Docherty MA, Boyd DH (1981) Plasma thiamin pyrophosphate and erythrocyte transketolase in chronic alcoholism. Am J Clin Nutr 34:1031–1033

    Article  CAS  PubMed  Google Scholar 

  56. Langlais P, Zhang S, Savage L (1996) Neuropathology of thiamine deficiency: an update on the comparative analysis of human disorders and experimental models. Metab Brain Dis 11:39–54

    Article  Google Scholar 

  57. Martin P, Levin S, Impeduglia G et al (1989) Thiamine deficiency in utero alters response to ethanol in adulthood. Psychopharmacology 97:253–256

    Article  CAS  PubMed  Google Scholar 

  58. Bâ A (2005) Functional vulnerability of developing central nervous system to maternal thiamine deficiencies in the rat. Dev Psychobiol 47:408–414

    Article  PubMed  CAS  Google Scholar 

  59. Bâ A (2009) Alcohol and B1 vitamin deficiency-related stillbirths. J Matern Fetal Neonatal Med 22:452–457

    Article  PubMed  CAS  Google Scholar 

  60. Bâ A (2011) Comparative effects of alcohol and thiamine deficiency on the developing central nervous system. Behav Brain Res 225(1):235–242

    Google Scholar 

  61. Hutson JR, Stade B, Lehotay DC et al (2012) Folic acid transport to the human fetus is decreased in pregnancies with chronic alcohol exposure. PLoS One. https://doi.org/10.1371/journal.pone.0038057

  62. Barak AJ, Beckenhauer HC, Tuma DJ et al (1987) Effects of prolonged ethanol feeding on methionine metabolism in rat liver. Biochem Cell Biol 65:230–233

    Article  CAS  PubMed  Google Scholar 

  63. Shrestha U, Singh M (2013) Effect of folic acid in prenatal alcohol induced behavioral impairment in Swiss albino mice. Ann Neurosci 20:134–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xu Y, Tang Y, Li Y (2008) Effect of folic acid on prenatal alcohol-induced modification of brain proteome in mice. BJN 99:455–461

    Article  CAS  Google Scholar 

  65. Cano MJ, Ayala A, Murillo ML et al (2001) Protective effect of folic acid against oxidative stress produced in 21-day postpartum rats by maternal-ethanol chronic consumption during pregnancy and lactation period. Free Radic Res 34:1–8

    Article  CAS  PubMed  Google Scholar 

  66. Han M, Neves AL, Serrano M et al (2012) Effects of alcohol, lithium, and homocysteine on nonmuscle myosin-II in the mouse placenta and human trophoblasts. Am J Obstet Gynecol 207:7–19

    Article  CAS  Google Scholar 

  67. Serrano M, Han M, Brinez P et al (2010) Fetal alcohol syndrome: cardiac birth defects in mice and prevention with folate. Am J Obstet Gynecol 203:7–15

    Article  CAS  Google Scholar 

  68. Linask KK, Han M (2016) Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development: folate prevention. Birth Defects Res A Clin Mol Teratol 106:749–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Butali A, Little J, Chevrier C et al (2013) Folic acid supplementation use and the MTHFR C677T polymorphism in orofacial clefts etiology: an individual participant data pooled-analysis. Birth Defects Res A Clin Mol Teratol 97:509–514

    Article  CAS  PubMed  Google Scholar 

  70. Skjærven K, Jakt L, Dahl J et al (2016) Parental vitamin deficiency affects the embryonic gene expression of immune-, lipid transport- and apolipoprotein genes. Sci Rep 6. https://doi.org/10.1038/srep34535

  71. Zeisel SH (2011) What choline metabolism can tell us about the underlying mechanisms of fetal alcohol spectrum disorders. Mol Neurobiol 44:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thomas JD, Garrison M, O’Neill TM (2004) Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol Teratol 26:35–45

    Article  CAS  PubMed  Google Scholar 

  73. Thomas JD, Abou EJ, Dominguez HD (2009) Prenatal choline supplementation mitigates the adverse effects of prenatal alcohol exposure on development in rats. Neurotoxicol Teratol 31:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomas JD, Biane JS, O’Bryan KA et al (2007) Choline supplementation following third-trimester-equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci 121:120–130

    Article  CAS  PubMed  Google Scholar 

  75. Bekdash RA, Zhang C, Sarkar DK (2013) Gestational choline supplementation normalized fetal alcohol-induced alterations in histone modifications, DNA methylation, and proopiomelanocortin (POMC) gene expression in beta-endorphin-producing POMC neurons of the hypothalamus. Alcohol Clin Exp Res 37:1133–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Monk BR, Leslie FM, Thomas JD (2012) The effects of perinatal choline supplementation on hippocampal cholinergic development in rats exposed to alcohol during the brain growth spurt. Hippocampus 22:1750–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meck WH, Smith RA, Williams CL (1989) Organizational changes in cholinergic activity and enhanced visuospatial memory as a function of choline administered prenatally or postnatally or both. Behav Neurosci 103:1234–1241

    Article  CAS  PubMed  Google Scholar 

  78. Thomas JD, Idrus NM, Monk BR et al (2010) Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats. Birth Defects Res A Clin Mol Teratol 88:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jacobson SW, Carter RC, Molteno CD et al (2018) Efficacy of maternal choline supplementation during pregnancy in mitigating adverse effects of prenatal alcohol exposure on growth and cognitive function: a randomized, double-blind, placebo-controlled clinical trial. Alcohol Clin Exp Res 42:1327–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dawson EB, McGanity WJ (1987) Protection of maternal iron stores in pregnancy. J Reprod Med 32:478–487

    CAS  PubMed  Google Scholar 

  81. Garzon S, Cacciato PM, Certelli C et al (2020) Iron deficiency anemia in pregnancy: novel approaches for an old problem. Oman Med J. https://doi.org/10.5001/omj.2020.108

  82. Scholl TO (2011) Maternal iron status: relation to fetal growth, length of gestation, and iron endowment of the neonate. Nutr Rev 69:S23–S29

    Article  PubMed  Google Scholar 

  83. Guo Y, Zhang N, Zhang (2019) Iron homeostasis in pregnancy and spontaneous abortion. Am J Hematol 94:184–188

    Article  CAS  PubMed  Google Scholar 

  84. Nair M, Churchill D, Robinson S et al (2017) Association between maternal haemoglobin and stillbirth: a cohort study among a multi-ethnic population in England. Br J Haematol 179:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moos T, Skjørringe T, Thomsen LL (2018) Iron deficiency and iron treatment in the fetal developing brain – a pilot study introducing an experimental rat model. Reprod Health. https://doi.org/10.1186/s12978-018-0537-0

  86. Miller MW, Roskams AJ, Connor JR (1995) Iron regulation in the developing rat brain: effect of in utero ethanol exposure. J Neurochem 65:373–380

    Article  CAS  PubMed  Google Scholar 

  87. Huebner SM, Blohowiak SE, Kling PJ et al (2016) Prenatal alcohol exposure alters fetal iron distribution and elevates hepatic hepcidin in a rat model of fetal alcohol spectrum disorders. J Nutr 146:1180–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rufer ES, Tran TD, Attridge MM et al (2012) Adequacy of maternal iron status protects against behavioral, neuroanatomical, and growth deficits in fetal alcohol spectrum disorders. PLoS One. https://doi.org/10.1371/journal.pone.0047499

  89. Jones KL, Smith DW, Ulleland CN et al (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1:1267–1271

    Article  CAS  PubMed  Google Scholar 

  90. Streissguth AP, Martin DC, Martin JC et al (1981) The Seattle longitudinal prospective-study on alcohol and pregnancy. Neurobehav Toxicol Teratol 3:223–233

    CAS  PubMed  Google Scholar 

  91. Carter RC, Jacobson SW, Molteno CD (2007) Fetal alcohol exposure, iron-deficiency anemia, and infant growth. Pediatrics 120:559–567

    Article  PubMed  Google Scholar 

  92. Carter RC, Jacobson JL, Molteno CD (2012) Effects of heavy prenatal alcohol exposure and iron deficiency anemia on child growth and body composition through age 9 years. Alcohol Clin Exp Res 36:1973–1982

    Article  PubMed  PubMed Central  Google Scholar 

  93. Halmesmäki E, Alfthan G, Ylikorkala O (1986) Selenium in pregnancy: effect of maternal drinking. Obstet Gynecol 68:602–605

    PubMed  Google Scholar 

  94. Cengiz B, Söylemez F, Öztürk E (2004) Serum zinc, selenium, copper and lead levels in women with second-trimester induced abortion resulting from neural tube defects. Biol Trace Elem Res 97:225–235

    Article  CAS  PubMed  Google Scholar 

  95. Barrington JW, Lindsay P, James D et al (1996) Selenium deficiency and miscarriage: a possible link? Br J Obstet Gynaecol 103:130–132

    Article  CAS  PubMed  Google Scholar 

  96. Huel G, Campagna D, Girard F (2000) Does selenium reduce the risk of threatened preterm delivery associated with placental cytochrome P450-1A1 activity? Environ Res 84:228–233

    Article  CAS  PubMed  Google Scholar 

  97. Rayman MP, Bode P, Redman CWG (2003) Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am J Obstet Gynecol 189:1343–1349

    Article  CAS  PubMed  Google Scholar 

  98. Tanner AR, Bantock I, Hinks L et al (1986) Depressed selenium and vitamin E levels in an alcoholic population. Dig Dis Sci 31:1307–1312

    Article  CAS  PubMed  Google Scholar 

  99. Dworkin BM, Rosenthal WS, Gordon GG (1984) Diminished blood selenium levels in alcoholics. Alcohol Clin Exp Res 8:535–538

    Article  CAS  PubMed  Google Scholar 

  100. Ojeda ML, Vazquez B, Nogales F et al (2009) Ethanol consumption by Wistar rat dams affects selenium bioavailability and antioxidant balance in their progeny. Int J Environ Res Public Health 6:2139–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Apgar J (1970) Effect of zinc deficiency on maintenance of pregnancy in the rat. J Nutr 100:470–476

    Article  CAS  PubMed  Google Scholar 

  102. Jameson S (1993) Zinc status in pregnancy: the effect of zinc therapy on perinatal mortality, prematurity and placental ablation. Ann N Y Acad Sci 678:178–192

    Article  CAS  PubMed  Google Scholar 

  103. Moghimi M, Ashrafzadeh S, Rassi S et al (2017) Maternal zinc deficiency and congenital anomalies in newborns. Pediatr Int 59:443–446

    Article  PubMed  Google Scholar 

  104. Wang H, Hu YF, Hao JH et al (2015) Maternal zinc deficiency during pregnancy elevates the risks of fetal growth restriction: a population-based birth cohort study. Sci Rep. https://doi.org/10.1038/srep11262

  105. Keen CL, Taubeneck MW, Daston GP et al (1995) Primary and secondary zinc deficiency as factors contributing to abnormal central nervous system development. Dev Brain Dysfunct 8:79–89

    Google Scholar 

  106. Miller SI, Del Villano BC, Flynn A et al (1983) Interaction of alcohol and zinc in fetal dysmorphogenesis. Pharmacol. Biochem Behav 18:311–315

    Article  CAS  Google Scholar 

  107. Flynn A, Miller SI, Martier SS et al (1981) Zinc status of pregnant alcoholic women: a determinant of fetal outcome. Lancet 1:572–574

    Article  CAS  PubMed  Google Scholar 

  108. Ruth RE, Goldsmith SK (1981) Interaction between zinc deprivation and acute ethanol intoxication during pregnancy in rats. J Nutr 111:2034–2038

    Article  CAS  PubMed  Google Scholar 

  109. Keppen LD, Pysher T, Rennert OM (1985) Zinc deficiency acts as a co-teratogen with alcohol in fetal alcohol syndrome. Pediatr Res 19:944–947

    Article  CAS  PubMed  Google Scholar 

  110. Patten AR, Brocardo PS, Christie BR (2013) Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J Nutr Biochem 24:760–769

    Article  CAS  PubMed  Google Scholar 

  111. Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:129–138

    Article  Google Scholar 

  112. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614–620

    Google Scholar 

  113. Horrocks LA, Yeo YK (1999) Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 40:211–225

    Article  CAS  PubMed  Google Scholar 

  114. Feltham BA, Louis XL, Kapourchali FR et al (2019) DHA supplementation during prenatal ethanol exposure alters the expression of fetal rat liver genes involved in oxidative stress regulation. Appl Physiol Nutr Metab 44:744–750

    Article  CAS  PubMed  Google Scholar 

  115. Wellmann KA, George F, Brnouti F et al (2016) Docosahexaenoic acid partially ameliorates deficits in social behavior and ultrasonic vocalizations caused by prenatal ethanol exposure. Behav Brain Res 286:201–211

    Article  CAS  Google Scholar 

  116. Beblo S, Stark KD, Murthy M et al (2005) Effects of alcohol intake during pregnancy on docosahexaenoic acid and arachidonic acid in umbilical cord vessels of black women. Pediatrics 115:194–203

    Article  Google Scholar 

  117. Sowell KD, Holt RR, Uriu-Adams JY et al (2020) Altered maternal plasma fatty acid composition by alcohol consumption and smoking during pregnancy and associations with fetal alcohol spectrum disorders. J Am Coll Nutr 39:249–260

    Article  PubMed  PubMed Central  Google Scholar 

  118. May PA, Hamrick KJ, Corbin KD et al (2014) Dietary intake, nutrition, and fetal alcohol spectrum disorders in the Western Cape Province of South Africa. Reprod Toxicol 46:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Manitoba Liquor & Lotteries and University of Manitoba Graduate Fellowship. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyoung Suh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kloss, O., Sharova, L., Suh, M. (2022). Nutrition Intervention as a Preventative Approach to Fetal Alcohol Spectrum Disorder. In: Chudley, A.E., Hicks, G.G. (eds) Fetal Alcohol Spectrum Disorder. Neuromethods, vol 188. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2613-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2613-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2612-2

  • Online ISBN: 978-1-0716-2613-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics