Skip to main content

Neuronal Puncta/Aggregate Formation by WT and Mutant UBQLN2

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Protein aggregates are a common feature of nearly all neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS). Here we describe a method to quickly and accurately measure protein aggregation in cells expressing a fluorescently tagged aggregation-prone protein. This unbiased method obviates the need for manual scoring and facilitates the identification of factors governing protein self-assembly and its downstream consequences for cell heath.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng H-X, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477(7363):211–215. https://doi.org/10.1038/nature10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Williams KL, Warraich ST, Yang S et al (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33(10):2527.e3–2527.e10. https://doi.org/10.1016/j.neurobiolaging.2012.05.008

    Article  CAS  Google Scholar 

  3. Teyssou E, Chartier L, Amador MDM et al (2017) Novel UBQLN2 mutations linked to amyotrophic lateral sclerosis and atypical hereditary spastic paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiol Aging 58:239.e11–239.e20. https://doi.org/10.1016/j.neurobiolaging.2017.06.018

    Article  CAS  Google Scholar 

  4. Gkazi SA, Troakes C, Topp S et al (2019) Striking phenotypic variation in a family with the P506S UBQLN2 mutation including amyotrophic lateral sclerosis, spastic paraplegia, and frontotemporal dementia. Neurobiol Aging 73:229.e5–229.e9. https://doi.org/10.1016/j.neurobiolaging.2018.08.015

    Article  CAS  Google Scholar 

  5. Brettschneider J, Van Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123(6):825–839. https://doi.org/10.1007/s00401-012-0970-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mori F, Tanji K, Odagiri S et al (2012) Ubiquilin immunoreactivity in cytoplasmic and nuclear inclusions in synucleinopathies, polyglutamine diseases and intranuclear inclusion body disease. Acta Neuropathol 124(1):149–151. https://doi.org/10.1007/s00401-012-0999-z

    Article  PubMed  Google Scholar 

  7. Safren N, Chang L, Dziki KM et al (2015) Signature changes in ubiquilin expression in the R6/2 mouse model of Huntington’s disease. Brain Res 1597:37–46. https://doi.org/10.1016/j.brainres.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  8. Dao TP, Kolaitis RM, Kim HJ et al (2018) Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69(6):965–978.e6. https://doi.org/10.1016/j.molcel.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dao TP, Martyniak B, Canning AJ et al (2019) ALS-linked mutations affect UBQLN2 Oligomerization and phase separation in a position- and amino acid-dependent manner. Structure 27(6):937–951. https://doi.org/10.1016/J.STR.2019.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang Y, Jones HB, Dao T et al (2019) Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase transitions and dense phase material properties. J Phys Chem B 123(17):3618–3629. https://doi.org/10.1021/acs.jpcb.9b01024

    Article  CAS  PubMed  Google Scholar 

  11. Sharkey LM, Safren N, Pithadia AS et al (2018) Mutant UBQLN2 promotes toxicity by modulating intrinsic self-assembly. Proc Natl Acad Sci U S A 115(44):E10495–E10504. https://doi.org/10.1073/pnas.1810522115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Higgins N, Lin B, Monteiro MJ (2019) Lou Gehrig’s disease (ALS): UBQLN2 mutations strike out of phase. Structure 27(6):879–881. https://doi.org/10.1016/j.str.2019.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang J, Nirujogi RS, Myong S et al (2018) Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. Proc Natl Acad Sci U S A 115(49):E11485–E11494. https://doi.org/10.1073/pnas.1811997115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramdzan YM, Polling S, Chia CPZ et al (2012) Tracking protein aggregation and mislocalization in cells with flow cytometry. Nat Methods 9(5):467–470. https://doi.org/10.1038/nmeth.1930

    Article  CAS  PubMed  Google Scholar 

  15. Weskamp K, Safren N, Miguez R et al (2019) Monitoring neuronal survival via longitudinal fluorescence microscopy. J Vis Exp 143. https://doi.org/10.3791/59036

  16. Viesselmann C, Ballweg J, Lumbard D et al (2010) Nucleofection and primary culture of embryonic mouse hippocampal and cortical neurons. J Vis Exp 47. https://doi.org/10.3791/2373

  17. Pacifici M, Peruzzi F (2012) Isolation and culture of rat embryonic neural cells: a quick protocol. J Vis Exp 63. https://doi.org/10.3791/3965

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami J. Barmada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Safren, N., Sharkey, L.M., Barmada, S.J. (2023). Neuronal Puncta/Aggregate Formation by WT and Mutant UBQLN2. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics