Skip to main content

Reproducible Formation of Insulin Superstructures: Amyloid-Like Fibrils, Spherulites, and Particulates

  • Protocol
  • First Online:
Protein Aggregation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2551))

Abstract

Inducing protein aggregation in vitro under various formulation and stress conditions may lead to an increased understanding of the different association routes a protein can undergo. However, a range of factors can affect the aggregation process, often leading to heterogenous samples and experimental irreproducibility between labs. Here, we present detailed methods to reproducibly form homogenous samples of superstructures: amyloid-like fibrils, spherulites, and particulates from human insulin. We discuss pitfalls and good practice in the lab, with the aim of creating awareness on the potential sources of artefacts for protein stability and aggregation studies.

Authors Minna Groenning and Vito Foderà share the last authorship of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fodera V, Zaccone A, Lattuada M et al (2013) Electrostatics controls the formation of amyloid superstructures in protein aggregation. Phys Rev Lett 111(10):1–5. https://doi.org/10.1103/PhysRevLett.111.108105

    Article  CAS  Google Scholar 

  2. Wälchli R, Vermeire P-J, Massant J et al (2019) Accelerated aggregation studies of monoclonal antibodies: considerations for storage stability. J Pharm Sci 109(1):595–602. https://doi.org/10.1016/j.xphs.2019.10.048

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg AS, Worobec AS (2004) A risk-based approach to immunogenicity concerns of therapeutic protein products, part 2: considering host-specific and product-specific factors impacting immunogenicity. BioPharm Int 17(12):34–42

    Google Scholar 

  4. Hermeling S, Schellekens H, Maas C et al (2006) Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J Pharm Sci 95(5):1084–1096. https://doi.org/10.1002/jps.20599

    Article  CAS  PubMed  Google Scholar 

  5. Vetri V, Fodera V (2015) The route to protein aggregate superstructures: particulates and amyloid-like spherulites. FEBS Lett 589(19A):2448–2463. https://doi.org/10.1016/j.febslet.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  6. Vestergaard B, Groenning M, Roessle M et al (2007) A helical structural nucleus is the primary elongating unit of insulin amyloid fibrils. PLoS Biol 5(5):1089–1097. https://doi.org/10.1371/journal.pbio.0050134

    Article  CAS  Google Scholar 

  7. Jansen R, Dzwolak W, Winter R (2005) Amyloidogenic self-assembly of insulin aggregates probed by high resolution atomic force microscopy. Biophys J 88(2):1344–1353. https://doi.org/10.1529/biophysj.104.048843

    Article  CAS  PubMed  Google Scholar 

  8. Ahmad A, Uversky VN, Hong D et al (2005) Early events in the fibrillation of monomeric insulin. J Biol Chem 280(52):42669–42675. https://doi.org/10.1074/jbc.M504298200

    Article  CAS  PubMed  Google Scholar 

  9. Fodera V, Donald AM (2010) Tracking the heterogeneous distribution of amyloid spherulites and their population balance with free fibrils. Eur Phys J E 33(4):273–282. https://doi.org/10.1140/epje/i2010-10665-4

    Article  CAS  PubMed  Google Scholar 

  10. De Luca G, Galparsoro DF, Sancataldo G et al (2020) Probing ensemble polymorphism and single aggregate structural heterogeneity in insulin amyloid self-assembly. J Coll Int Sci 574(1):229–240. https://doi.org/10.1016/j.jcis.2020.03.107

    Article  CAS  Google Scholar 

  11. Krebs MRH, Macphee CE, Miller AF et al (2004) The formation of spherulites by amyloid fibrils of bovine insulin. Proc Natl Acad Sci USA 101(40):14420–14424. https://doi.org/10.1073/pnas.0405933101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fodera V, Vetri V, Wind TS et al (2014) Observation of the early structural changes leading to the formation of protein superstructures. J Phys Chem Lett 5(18):3254–3258. https://doi.org/10.1021/jz501614e

    Article  CAS  PubMed  Google Scholar 

  13. Krebs MRH, Devlin GL, Donald AM (2007) Protein particulates: another generic form of protein aggregation? Biophys J 92(4):1336–1342. https://doi.org/10.1529/biophysj.106.094342

    Article  CAS  PubMed  Google Scholar 

  14. Vetri V, D’amico M, Fodera V et al (2011) Bovine serum albumin protofibril-like aggregates formation: solo but not simple mechanism. Arch Biochem Biophys 508(1):13–24. https://doi.org/10.1016/j.abb.2011.01.024

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen MN, Fodera V, Horvath I et al (2015) Direct correlation between ligand-induced alpha-synuclein oligomers and amyloid-like fibril growth. Sci Rep 5(10422):1–11. https://doi.org/10.1038/srep10422

    Article  Google Scholar 

  16. Heijna MCR, Theelen MJ, Van Enckevort WJP et al (2007) Spherulitic growth of hen egg-white lysozyme crystals. J Phys Chem B 111(7):1567–1573. https://doi.org/10.1021/jp0643294

    Article  CAS  PubMed  Google Scholar 

  17. Jiang Y, Shi K, Xia D et al (2011) Protein spherulites for sustained release of interferon: preparation, characterization and in vivo evaluation. J Pharm Sci 100(5):1913–1922. https://doi.org/10.1002/jps.22403

    Article  CAS  PubMed  Google Scholar 

  18. Lambrecht MA, Jansens KJA, Rombouts I et al (2019) Conditions governing food protein amyloid fibril formation. Part II: milk and legume proteins. Com Rev Food Sci Food Safe 18(1):1277–1291. https://doi.org/10.1111/1541-4337.12465

    Article  CAS  Google Scholar 

  19. Scheidt T, Łapińska U, Kumita JR et al (2019) Secondary nucleation and elongation occur at different sites on Alzheimer’s amyloid-β aggregates. Sci Adv 5(4):1–9. https://doi.org/10.1126/sciadv.aau3112

    Article  CAS  Google Scholar 

  20. Krebs MRH, Domike KR, Donald AM (2009) Protein aggregation: more than just fibrils. Biochem Soc Trans 37(4):682–686. https://doi.org/10.1042/BST0370682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was funded, and all protein material was provided by Novo Nordisk A/S. For use of the TEM, we acknowledge the Core Facility for Integrated Microscopy, Faculty of Health and Medical Sciences, University of Copenhagen. For use of the MFI image evaluation software, we acknowledge Jesper Søndergaard Marino from Novo Nordisk A/S. Illustrations presented in the chapter were created with Biorender.com. V.F. also acknowledges the VILLUM FONDEN for the Villum Young Investigator Grant “Protein Superstructures as Smart Biomaterials (ProSmart)” 2018–2023 (project number: 19175). The authors acknowledge Marco van de Weert (University of Copenhagen) for inspiring discussions on reproducibility in protein stability and aggregation studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Camilla Thorlaksen or Vito Foderà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thorlaksen, C., Neergaard, M.B., Groenning, M., Foderà, V. (2023). Reproducible Formation of Insulin Superstructures: Amyloid-Like Fibrils, Spherulites, and Particulates. In: Cieplak, A.S. (eds) Protein Aggregation. Methods in Molecular Biology, vol 2551. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2597-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2597-2_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2596-5

  • Online ISBN: 978-1-0716-2597-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics