Skip to main content

Patch-Clamp Electrophysiological Analysis of Murine Melanopsin Neurons

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

Abstract

Intrinsically photosensitive retinal ganglion cells (ipRGCs) regulate diverse aspects of mammalian physiology, including the synchronization of circadian rhythms with local time. These neurons sense light with a receptor called melanopsin and provide practically all retinal innervation of the suprachiasmatic nucleus, the master clock. Their activity is especially important over long timescales. How do ipRGCs respond to light, what signals do they send downstream, and to what extent are these signals tailored to circadian photoregulation? This chapter provides practical guidance for studying ipRGC signals in the ex vivo mouse retina using patch-clamp electrophysiology and optical stimulation. Somatic and axonal recording are covered, as are methods that include loose, cell attached, whole cell, and perforated patch. Also discussed are how particular features of the ipRGC light response affect the design and interpretation of experiments. These approaches may be useful in the broader effort to understand how a neuron’s functional properties align with its role in the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z et al (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413):502–504

    Article  CAS  Google Scholar 

  2. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW et al (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424(6944):76–81

    Article  CAS  Google Scholar 

  3. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM et al (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301(5632):525–527

    Article  CAS  Google Scholar 

  4. Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104(2):205–226. https://doi.org/10.1016/j.neuron.2019.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci 95(1):340–345

    Article  CAS  Google Scholar 

  6. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073

    Article  CAS  Google Scholar 

  7. Hattar S, Liao HW, Takao M, Berson DM, Yau K-W (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070

    Article  CAS  Google Scholar 

  8. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415(6871):493

    Article  CAS  Google Scholar 

  9. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau K-W et al (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349

    Article  Google Scholar 

  10. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T et al (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60. doi: S0896-6273(10)00419-8 [pii]. https://doi.org/10.1016/j.neuron.2010.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morin LP, Studholme KM (2014) Retinofugal projections in the mouse. J Comp Neurol 522(16):3733–3753. https://doi.org/10.1002/cne.23635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW et al (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453(7191):102–105

    Article  Google Scholar 

  13. Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23(18):7093–7106

    Article  CAS  Google Scholar 

  14. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Schmedt C et al (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451

    Article  Google Scholar 

  15. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB et al (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213–2216

    Google Scholar 

  16. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC et al (2002) Role of melanopsin in circadian responses to light. Science 298(5601):2211–2213

    Article  CAS  Google Scholar 

  17. Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Michelle Fogerson P, Leyrer ML et al (2019) The M6 cell: a small-field bistratified photosensitive retinal ganglion cell. J Comp Neurol 527(1):297–311. https://doi.org/10.1002/cne.24556

    Article  CAS  PubMed  Google Scholar 

  18. Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27(7):1763–1770

    Article  Google Scholar 

  19. Chen SK, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476(7358):92–95. https://doi.org/10.1038/nature10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neher E, Sakmann B (1995) Single-channel recording. Springer, Boston

    Google Scholar 

  21. Walz W, Boulton A, Baker G (2002) Patch-clamp analysis. Humana Press, Totowa

    Book  Google Scholar 

  22. Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100(1):371–384. doi: 00062.2008 [pii]. https://doi.org/10.1152/jn.00062.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Do MTH, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE et al (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457(7227):281–287. doi: nature07682 [pii]. https://doi.org/10.1038/nature07682

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Yue WWS, Jiang Z, Xue T, Kang SH, Bergles DE et al (2017) Synergistic signaling by light and acetylcholine in mouse iris sphincter muscle. Curr Biol 27(12):1791–800 e5. https://doi.org/10.1016/j.cub.2017.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vis Res 42(4):517–525. https://doi.org/10.1016/s0042-6989(01)00146-8

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Silveyra E, Jin N, Ribelayga CP (2018) A congenic line of the C57BL/6J mouse strain that is proficient in melatonin synthesis. J Pineal Res 65(3):e12509. https://doi.org/10.1111/jpi.12509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP et al (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9):1107–1112. https://doi.org/10.1038/nn.2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Luo D-G, Kefalov V, Yau K-W (2008) 1.10 - Phototransduction in retinal rods and cones. In: Basbaum AI (ed) The senses: a comprehensive reference. Elsevier/Academic Press

    Google Scholar 

  29. Barlow HB, Levick WR, Yoon M (1971) Responses to single quanta of light in retinal ganglion cells of the cat. Vision Res (Suppl 3):87–101

    Google Scholar 

  30. Baylor DA, Lamb TD, Yau K-W (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    Article  CAS  Google Scholar 

  31. Field GD, Sampath AP, Rieke F (2005) Retinal processing near absolute threshold: from behavior to mechanism. Annu Rev Physiol 67:491–514

    Article  CAS  Google Scholar 

  32. Dunn FA, Doan T, Sampath AP, Rieke F (2006) Controlling the gain of rod-mediated signals in the Mammalian retina. J Neurosci 26(15):3959–3970. doi: 26/15/3959 [pii]. https://doi.org/10.1523/JNEUROSCI.5148-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weng S, Estevez ME, Berson DM (2013) Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 8(6):e66480. https://doi.org/10.1371/journal.pone.0066480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Smeds L, Takeshita D, Turunen T, Tiihonen J, Westo J, Martyniuk N et al (2019) Paradoxical rules of spike train decoding revealed at the sensitivity limit of vision. Neuron 104(3):576–587. https://doi.org/10.1016/j.neuron.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  35. Alpern M (1971) Rhodopsin kinetics in the human eye. J Physiol 217(2):447–471. https://doi.org/10.1113/jphysiol.1971.sp009580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB et al (2009) Eyecup scope--optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch 457(6):1393–1414. https://doi.org/10.1007/s00424-008-0603-5

    Article  CAS  PubMed  Google Scholar 

  37. Wei W, Elstrott J, Feller MB (2010) Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina. Nat Protoc 5(7):1347–1352. https://doi.org/10.1038/nprot.2010.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Magistretti J, Mantegazza M, Guatteo E, Wanke E (1996) Action potentials recorded with patch-clamp amplifiers: are they genuine? Trends Neurosci 19(12):530–534. https://doi.org/10.1016/s0166-2236(96)40004-2

    Article  CAS  PubMed  Google Scholar 

  39. Magistretti J, Mantegazza M, de Curtis M, Wanke E (1998) Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study. Biophys J 74(2 Pt 1):831–842. https://doi.org/10.1016/S0006-3495(98)74007-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rae JL, Levis RA (1992) Glass technology for patch clamp electrodes. Methods Enzymol 207:66–92. https://doi.org/10.1016/0076-6879(92)07005-9

    Article  CAS  PubMed  Google Scholar 

  41. Taddese A, Bean BP (2002) Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron 33(4):587–600. doi: S0896627302005743 [pii]

    Article  CAS  Google Scholar 

  42. Ames A 3rd, Nesbett FB (1981) In vitro retina as an experimental model of the central nervous system. J Neurochem 37(4):867–877

    Google Scholar 

  43. Milner ESM, Do MTH (2017) A population representation of absolute light intensity in the mammalian retina. Cell 171:11

    Article  Google Scholar 

  44. Hartwick AT, Bramley JR, Yu J, Stevens KT, Allen CN, Baldridge WH et al (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27(49):13468–13480. doi: 27/49/13468 [pii]. https://doi.org/10.1523/JNEUROSCI.3626-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29(2):476–482. 29/2/476 [pii]. https://doi.org/10.1523/JNEUROSCI.4117-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emanuel AJ, Do MTH (2015) Melanopsin tristability for sustained and broadband phototransduction. Neuron 85(5):1043–1055. https://doi.org/10.1016/j.neuron.2015.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Emanuel AJ, Kapur K, Do MTH (2017) Biophysical variation within the M1 type of ganglion cell photoreceptor. Cell Rep 21:14

    Article  Google Scholar 

  48. Pan F, Toychiev A, Zhang Y, Atlasz T, Ramakrishnan H, Roy K et al (2016) Inhibitory masking controls the threshold sensitivity of retinal ganglion cells. J Physiol 594(22):6679–6699. https://doi.org/10.1113/JP272267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neher E (1992) Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol 207:123–131

    Article  CAS  Google Scholar 

  50. Akaike N, Harata N (1994) Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. Jpn J Physiol 44(5):433–473. https://doi.org/10.2170/jjphysiol.44.433

    Article  CAS  PubMed  Google Scholar 

  51. Bean BP (1992) Whole-cell recording of calcium channel currents. Methods Enzymol 207:181–193

    Article  CAS  Google Scholar 

  52. Wong KY, Dunn FA, Berson DM (2005) Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells. Neuron 48(6):1001–1010

    Article  CAS  Google Scholar 

  53. Do MTH, Yau K-W (2013) Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 110(18):7470–7475. https://doi.org/10.1073/pnas.1304039110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Akaike N (1996) Gramicidin perforated patch recording and intracellular chloride activity in excitable cells. Prog Biophys Mol Biol 65(3):251–264

    Article  CAS  Google Scholar 

  55. Kanjhan R, Vaney DI (2008) Semi-loose seal Neurobiotin electroporation for combined structural and functional analysis of neurons. Pflugers Arch 457(2):561–568. https://doi.org/10.1007/s00424-008-0539-9

    Article  CAS  PubMed  Google Scholar 

  56. Bryman GS, Liu A, Do MTH (2020) Optimized signal flow through photoreceptors supports the high-acuity vision of primates. Neuron 108(2):335–48 e7. https://doi.org/10.1016/j.neuron.2020.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12(4):819–829. doi: 0896-6273(94)90335-2 [pii]

    Google Scholar 

  58. Litvina EY, Chen C (2017) Functional convergence at the retinogeniculate synapse. Neuron 96(2):330–8 e5. https://doi.org/10.1016/j.neuron.2017.09.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higure Y, Katayama Y, Takeuchi K, Ohtubo Y, Yoshii K (2003) Lucifer Yellow slows voltage-gated Na+ current inactivation in a light-dependent manner in mice. J Physiol 550(Pt 1):159–167. https://doi.org/10.1113/jphysiol.2003.040733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  61. Kay AR (1992) An intracellular medium formulary. J Neurosci Methods 44(2–3):91–100. https://doi.org/10.1016/0165-0270(92)90002-u

    Article  CAS  PubMed  Google Scholar 

  62. Velumian AA, Zhang L, Pennefather P, Carlen PL (1997) Reversible inhibition of IK, IAHP, Ih and ICa currents by internally applied gluconate in rat hippocampal pyramidal neurones. Pflugers Arch 433(3):343–350. https://doi.org/10.1007/s004240050286

    Article  CAS  PubMed  Google Scholar 

  63. Kaczorowski CC, Disterhoft J, Spruston N (2007) Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. J Physiol 578(Pt 3):799–818. https://doi.org/10.1113/jphysiol.2006.124586

    Article  CAS  PubMed  Google Scholar 

  64. Do MTH, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39(1):109–120. doi: S089662730300360X [pii]

    Article  CAS  Google Scholar 

  65. Blair NT, Bean BP (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci 22(23):10277–10290. doi: 22/23/10277 [pii]

    Article  CAS  Google Scholar 

  66. Jackson AC, Yao GL, Bean BP (2004) Mechanism of spontaneous firing in dorsomedial suprachiasmatic nucleus neurons. J Neurosci 24(37):7985–7998. https://doi.org/10.1523/JNEUROSCI.2146-04.2004. 24/37/7985 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnsen S (2012) The optics of life: a biologist’s guide to light in nature. Princeton University Press, Princeton

    Book  Google Scholar 

  68. Palczewska G, Vinberg F, Stremplewski P, Bircher MP, Salom D, Komar K et al (2014) Human infrared vision is triggered by two-photon chromophore isomerization. Proc Natl Acad Sci U S A 111(50):E5445–E5454. https://doi.org/10.1073/pnas.1410162111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lamb TD (1995) Photoreceptor spectral sensitivities: common shape in the long-wavelength region. Vis Res 35(22):3083–3091

    Article  CAS  Google Scholar 

  70. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17(4):509–528

    Article  CAS  Google Scholar 

  71. Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW (2013) Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr Biol 23(17):1696–1701. https://doi.org/10.1016/j.cub.2013.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matsuyama T, Yamashita T, Imamoto Y, Shichida Y (2012) Photochemical properties of mammalian melanopsin. Biochemistry 51:5454–5462. https://doi.org/10.1021/bi3004999

    Article  CAS  PubMed  Google Scholar 

  73. Walker MT, Brown RL, Cronin TW, Robinson PR (2008) Photochemistry of retinal chromophore in mouse melanopsin. Proc Natl Acad Sci 105(26):8861–8865

    Article  CAS  Google Scholar 

  74. Crary JI, Gordon SE, Zimmerman AL (1998) Perfusion system components release agents that distort functional properties of rod cyclic nucleotide-gated ion channels. Vis Neurosci 15(6):1189–1193. https://doi.org/10.1017/s0952523898156134

    Article  CAS  PubMed  Google Scholar 

  75. Ou J, Ball JM, Luan Y, Zhao T, Miyagishima KJ, Xu Y et al (2018) iPSCs from a hibernator provide a platform for studying cold adaptation and its potential medical applications. Cell 173(4):851–63 e16. https://doi.org/10.1016/j.cell.2018.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Azevedo AW, Rieke F (2011) Experimental protocols alter phototransduction: the implications for retinal processing at visual threshold. J Neurosci 31(10):3670–3682. https://doi.org/10.1523/JNEUROSCI.4750-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao X, Stafford BK, Godin AL, King WM, Wong KY (2014) Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 592(7):1619–1636. https://doi.org/10.1113/jphysiol.2013.262782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jain V, Ravindran E, Dhingra NK (2012) Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. J Comp Neurol 520(4):742–755. https://doi.org/10.1002/cne.22765

    Article  CAS  PubMed  Google Scholar 

  79. Tran NM, Shekhar K, Whitney IE, Jacobi A, Benhar I, Hong G et al (2019) Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104(6):1039–55 e12. https://doi.org/10.1016/j.neuron.2019.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nunemaker CS, DeFazio RA, Moenter SM (2003) A targeted extracellular approach for recording long-term firing patterns of excitable cells: a practical guide. Biol Proced Online 5:53–62. https://doi.org/10.1251/bpo46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao X, Pack W, Khan NW, Wong KY (2016) Prolonged inner retinal photoreception depends on the visual retinoid cycle. J Neurosci 36(15):4209–4217. https://doi.org/10.1523/JNEUROSCI.2629-14.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fricker D, Verheugen JA, Miles R (1999) Cell-attached measurements of the firing threshold of rat hippocampal neurones. J Physiol 517(Pt 3):791–804. https://doi.org/10.1111/j.1469-7793.1999.0791s.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Williams SR, Wozny C (2011) Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings. Nat Commun 2:242. https://doi.org/10.1038/ncomms1225

    Article  CAS  PubMed  Google Scholar 

  84. Alcami P, Franconville R, Llano I, Marty A (2012) Measuring the firing rate of high-resistance neurons with cell-attached recording. J Neurosci 32(9):3118–3130. https://doi.org/10.1523/JNEUROSCI.5371-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92(2):145–159

    Article  CAS  Google Scholar 

  86. Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23(9):2477–2487

    Article  Google Scholar 

  87. Muller LP, Do MT, Yau KW, He S, Baldridge WH (2010) Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. J Comp Neurol 518(23):4813–4824. https://doi.org/10.1002/cne.22490

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sonoda T, Lee SK, Birnbaumer L, Schmidt TM (2018) Melanopsin phototransduction is repurposed by ipRGC subtypes to shape the function of distinct visual circuits. Neuron 99(4):754–67 e4. https://doi.org/10.1016/j.neuron.2018.06.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu W, Shu Y (2012) Axonal bleb recording. Neurosci Bull 28(4):342–350. https://doi.org/10.1007/s12264-012-1247-1

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shu Y, Hasenstaub A, Duque A, Yu Y, McCormick DA (2006) Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441(7094):761–765. https://doi.org/10.1038/nature04720

    Article  CAS  PubMed  Google Scholar 

  91. Baylor DA, Hodgkin AL (1973) Detection and resolution of visual stimuli by turtle photoreceptors. J Physiol 234(1):163–198

    Article  CAS  Google Scholar 

  92. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau K-W, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res 47(7):946–954

    Article  CAS  Google Scholar 

  93. Frederiksen R, Boyer NP, Nickle B, Chakrabarti KS, Koutalos Y, Crouch RK et al (2012) Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. J Gen Physiol 139(6):493–505. https://doi.org/10.1085/jgp.201110685

  94. Crouch RK, Kefalov V, Gartner W, Cornwall MC (2002) Use of retinal analogues for the study of visual pigment function. Methods Enzymol 343:29–48

    Article  Google Scholar 

  95. Berson DM, Castrucci AM, Provencio I (2010) Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 518(13):17. https://doi.org/10.1002/cne.22381

    Article  Google Scholar 

  96. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM, Leyrer ML et al (2018) The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97(1):251. https://doi.org/10.1016/j.neuron.2017.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schmidt TM, Kofuji P (2011) Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse. J Comp Neurol 519(8):1492–1504. https://doi.org/10.1002/cne.22579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO (2014) Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr Biol 24(3):310–315. https://doi.org/10.1016/j.cub.2013.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alreja M, Aghajanian GK (1994) QX-314 blocks the potassium but not the sodium-dependent component of the opiate response in locus coeruleus neurons. Brain Res 639(2):320–324. https://doi.org/10.1016/0006-8993(94)91746-9

    Article  CAS  PubMed  Google Scholar 

  100. Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Li BY, Wachter RD et al (2015) All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 25(21):2763–2773. https://doi.org/10.1016/j.cub.2015.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Experiments performed by the author as a postdoctoral fellow are shown with the kind permission of his advisor, King-Wai Yau. Alan Emanuel, Elliott Milner, and Andreas Liu also obtained unpublished data from their archives. Discussions with Bruce Bean enriched this chapter. Insight on the fastidiousness of pioneering retinal physiologists was provided by Solange Brown. Comments on the manuscript were given by Chinfei Chen, Franklin Caval-Holme, Hannah Blume, and Bruce Bean. Funding was provided by the National Institutes of Health (EY023648, EY025555, and EY032731).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Tri Hoang Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Do, M.T.H. (2022). Patch-Clamp Electrophysiological Analysis of Murine Melanopsin Neurons. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics