Skip to main content

Mathematical Modeling of Circadian Rhythms

  • Protocol
  • First Online:
Circadian Clocks

Abstract

Mathematical techniques are often viewed as tools for data description and analysis. A valuable additional purpose is employing mathematical models as a research technique to both generate and test hypotheses. Mathematical model simulations have elucidated key processes controlling phase, amplitude, period, and synchrony in the circadian system from the molecular level to the organismal level. Through a series of three examples spanning a range of different spatial scales, we demonstrate the valuable interplay among mathematical modeling, experimental data, and hypotheses about the generation of circadian rhythms, the properties of these rhythms, and their manipulation.

Models have allowed circadian rhythms researchers to identify relationships between molecular and environmental inputs to the central circadian clock and output properties of that clock that can be used to make predictions about valuable targets for shifting the clock. They have demonstrated how features of networks of oscillators lead to synchrony among the oscillators of the circadian system, and they have illustrated how different experimental protocols may result in seemingly contradictory conclusions about the properties of the circadian system that emerge at the organismal level from these networks. This interplay among model, experiment, and hypothesis makes mathematical modeling a powerful research technique not only for data analysis but also for developing hypotheses and designing experiments to test them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodwin BC (1965) Oscillatory behavior in enzymatic control processes. Adv Enzym Regul 3:425–428

    Article  CAS  Google Scholar 

  2. Kronauer RE, Forger DB, Jewett ME (1999) Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the phototopic range. J Biol Rhythm 14:500–515. https://doi.org/10.1177/074873099129001073

    Article  CAS  Google Scholar 

  3. Forger DB, Peskin CS (2003) A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci U S A 100:14806–14811

    Article  CAS  Google Scholar 

  4. Kim JK, Forger DB (2012) A mechanism for robust circadian timekeeping via stoichiometric balance. Mol Syst Biol 8:1–14. https://doi.org/10.1038/msb.2012.62

    Article  CAS  Google Scholar 

  5. Mirsky HP, Liu AC, Welsh DK et al (2009) A model of the cell-autonomous mammalian circadian clock. Proc Natl Acad Sci U S A 106:11107–11112. https://doi.org/10.1073/pnas.0904837106

    Article  PubMed  PubMed Central  Google Scholar 

  6. Relógio A, Westermark PO, Wallach T et al (2011) Tuning the mammalian circadian clock: robust synergy of two loops. PLoS Comput Biol 7:1–18. https://doi.org/10.1371/journal.pcbi.1002309

    Article  CAS  Google Scholar 

  7. Leloup J, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci U S A 100:7051–7056

    Article  CAS  Google Scholar 

  8. Asgari-Targhi A, Klerman EB (2018) Mathematical modeling of circadian rhythms, WIREs Syst Biol Med:e1439. https://doi.org/10.1002/wsbm.1439

  9. Kim DW, Chang C, Chen X et al (2019) Systems approach reveals photosensitivity and PER 2 level as determinants of clock-modulator efficacy. Mol Syst Biol 15:1–16. https://doi.org/10.15252/msb.20198838

    Article  CAS  Google Scholar 

  10. Doyle FJ III, Huyett LM, Lee JB et al (2014) Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care 37:1191–1197. https://doi.org/10.2337/dc13-2108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wilkins AK, Tidor B, White J, Barton PI (2009) Sensitivity analysis for oscillating dynamical systems. SIAM J Sci Comput 31:2706–2732. https://doi.org/10.1137/070707129

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taylor SR, Doyle FJ III, Petzold LR (2008) Oscillator model reduction preserving the phase response: application to the circadian clock. Biophys J 95:1658–1673. https://doi.org/10.1529/biophysj.107.128678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abel JH, Doyle FJ III (2016) A systems theoretic approach to analysis and control of mammalian circadian dynamics. Chem Eng Res Des 116:48–60

    Article  CAS  Google Scholar 

  14. St. John PC, Taylor SR, Abel JH, Doyle FJ III (2014) Amplitude metrics for cellular circadian bioluminescence reporters. Biophys J 107:2712–2722. https://doi.org/10.1016/j.bpj.2014.10.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roenneberg T, Hut R, Daan S, Merrow M (2010) Entrainment concepts revisited. J Biol Rhythm 25:329–339. https://doi.org/10.1177/0748730410379082

    Article  Google Scholar 

  16. Hirota T, Lee JW, St. John PC et al (2012) Identification of small molecule activators of cryptochrome. Science (80-) 337:1094–1097. https://doi.org/10.1126/science.1223710

    Article  CAS  Google Scholar 

  17. Brown LS, Doyle FJ III (2020) A dual-feedback loop model of the mammalian circadian clock for multi-input control of circadian phase. PLoS Comput Biol 16:e1008459. https://doi.org/10.1371/journal.pcbi.1008459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gonze D, Bernard S, Waltermann C et al (2005) Spontaneous synchronization of coupled circadian oscillators. Biophys J 89:120–129. https://doi.org/10.1529/biophysj.104.058388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abel JH, Chakrabarty A, Klerman EB, Doyle FJ III (2019) Pharmaceutical-based entrainment of circadian phase via nonlinear model predictive control. Automatica 100:336–348

    Article  Google Scholar 

  20. Wu G, Anafi RC, Hughes ME et al (2016) MetaCycle: an integrated R package to evaluate periodicity in large scale data. Bioinformatics 32:3351–3353. https://doi.org/10.1093/bioinformatics/btw405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Society for research on biological rhythms research tools (2021) https://srbr.org/education-outreach/research-tools/

  22. DeWoskin D, Geng W, Stinchcombe AR, Forger DB (2014) It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface Focus 4:20130076. https://doi.org/10.1098/rsfs.2013.0076

    Article  PubMed  PubMed Central  Google Scholar 

  23. DeWoskin D, Myung J, Belle MDC et al (2015) Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci U S A 112:E3911–E3919. https://doi.org/10.1073/pnas.1420753112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruben MD, Wu G, Smith DF et al (2018) A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 3:1–8

    Google Scholar 

  25. Ananthasubramaniam B, Herzel H (2014) Positive feedback promotes oscillations in negative feedback loops. PLoS One 9:e104761. https://doi.org/10.1371/journal.pone.0104761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pett JP, Koren A, Wesener F et al (2016) Feedback loops of the mammalian circadian clock constitute repressilator. PLoS Comput Biol:1–15. https://doi.org/10.1371/journal.pcbi.1005266

  27. Pett JP, Kondoff M, Bordyugov G et al (2018) Co-existing feedback loops generate tissue-specific circadian rhythms. Life Sci Alliance 1:e201800078. https://doi.org/10.26508/lsa.201800078

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim JK, Tyson JJ (2020) Misuse of the Michaelis–Menten rate law for protein interaction networks and its remedy. PLoS Comput Biol 16:1–21. https://doi.org/10.1371/journal.pcbi.1008258

    Article  CAS  Google Scholar 

  29. Zhao X, Hirota T, Han X et al (2016) Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell 165:1644–1657. https://doi.org/10.1016/j.cell.2016.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Lee S, Chung S et al (2016) Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochem Biophys Res Commun 469:580–586. https://doi.org/10.1016/j.bbrc.2015.12.030

    Article  CAS  PubMed  Google Scholar 

  31. Hirota T, Lewis WG, Liu AC et al (2008) A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3beta. Proc Natl Acad Sci U S A 105:20746–20751. https://doi.org/10.1073/pnas.0811410106

    Article  PubMed  PubMed Central  Google Scholar 

  32. Allada R (2003) Circadian clocks: a tale of two feedback loops. Cell 112:284–286

    Article  CAS  Google Scholar 

  33. Ikeda R, Tsuch Y, Koike N et al (2019) REV-ERB α and REV-ERB β function as key factors regulating mammalian circadian output. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-46656-0

    Article  CAS  Google Scholar 

  34. Adby PR, Dempster MAH (1974) Introduction to optimization methods. Chapman and Hall, London

    Book  Google Scholar 

  35. Narasimamurthy R, Virshup DM (2017) Molecular mechanisms regulating temperature compensation of the circadian clock. Front Neurol 8:1–5. https://doi.org/10.3389/fneur.2017.00161

    Article  Google Scholar 

  36. Gallego M, Virshup DM (2007) Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148. https://doi.org/10.1038/nrm2106

    Article  CAS  PubMed  Google Scholar 

  37. Welsh DK, Takahashi JS, Kay SA (2009) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577. https://doi.org/10.1146/annurev-physiol-021909-135919

    Article  CAS  Google Scholar 

  38. Aton SJ, Colwell CS, Harmar AJ et al (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8:476–483. https://doi.org/10.1038/nn1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yamaguchi Y, Suzuki T, Mizoro Y et al (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science (80-) 342:85–90

    Article  CAS  Google Scholar 

  40. Mieda M, Ono D, Hasegawa E et al (2015) Cellular clocks in AVP neurons of the scn are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron 85:1103–1116. https://doi.org/10.1016/j.neuron.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  41. Shan Y, Abel JH, Li Y et al (2020) Dual-color single-cell imaging of the suprachiasmatic nucleus reveals a circadian role in network synchrony. Neuron 108:164–179.e7. https://doi.org/10.1016/j.neuron.2020.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hannay KM, Booth V, Forger DB (2019) Macroscopic models for human circadian rhythms:1–14. https://doi.org/10.1177/0748730419878298

  43. von Aschoff J, Wever R (1962) Spontanperiodik des Menschen bei Ausschluß aller Zeitgeber. Naturwissenschaften 49:337–342

    Article  Google Scholar 

  44. Wever RA (1979) The circadian system of man: results of experiments under temporal isolation. Springer, New York

    Book  Google Scholar 

  45. Duffy JF, Cain SW, Chang A-M et al (2011) Sex difference in the near-24-hour intrinsic period of the human circadian timing system. Proc Natl Acad Sci 108:15602–15608. https://doi.org/10.1073/pnas.1010666108

    Article  PubMed  PubMed Central  Google Scholar 

  46. Klerman EB, Dijk DJ, Kronauer RE, Czeisler CA (1996) Simulations of light effects on the human circadian pacemaker: implications for assessment of intrinsic period. Am J Physiol – Regul Integr Comp Physiol 270. https://doi.org/10.1152/ajpregu.1996.270.1.r271

  47. St. Hilaire MA, Klerman EB, Khalsa SBS et al (2007) Addition of a non-photic component to a light-based mathematical model of the human circadian pacemaker. J Theor Biol 247:583–599. https://doi.org/10.1016/j.jtbi.2007.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kronauer RE, St. Hilaire MA, Rahman SA et al (2019) An exploration of the temporal dynamics of circadian resetting responses to short- and long-duration light exposures: cross-species consistencies and differences. J Biol Rhythm 34:497–514. https://doi.org/10.1177/0748730419862702

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis J. Doyle III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, L.S., Abel, J.H., Klerman, E.B., Doyle, F.J. (2022). Mathematical Modeling of Circadian Rhythms. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics