Skip to main content

Identification and Characterization of Genes Involved in Vertebrate Photoperiodism

  • Protocol
  • First Online:
Circadian Clocks

Part of the book series: Neuromethods ((NM,volume 186))

  • 629 Accesses

Abstract

To cope with seasonal changes in the environment, animals change their physiology and behavior, such as reproduction, metabolism, immune function, migration, and hibernation. Among various seasonally fluctuating environmental cues, photoperiod is a dominant cue that drives different seasonal responses. The responses of organisms to photoperiodic changes are called photoperiodism. Although mechanisms of seasonal reproduction have been uncovered in the past several decades, the molecular mechanisms of other photoperiodically regulated physiology and behavior remain unknown. Recent advances in genome sequencing and genome editing techniques in non-model animals have enabled us to identify and characterize the genes involved in photoperiodism. In the present chapter, we discuss the background of photoperiodism, followed by a description of the methods used to identify and characterize genes involved in vertebrate photoperiodism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  2. Elliott JA (1976) Circadian rhythms and photoperiodic time measurement in mammals. Fed Proc 35:2339–2346

    CAS  PubMed  Google Scholar 

  3. Goldman BD (2001) Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythm 16:283–301

    Article  CAS  Google Scholar 

  4. Follett BK, Maung SL (1978) Rate of testicular maturation, in relation to gonadotrophin and testosterone levels, in quail exposed to various artificial photoperiods and to natural daylengths. J Endocrinol 78:267–280

    Article  CAS  Google Scholar 

  5. Pittendrigh CS, Minis DH (1964) The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am Nat 98:261–299

    Article  Google Scholar 

  6. Pittendrigh CS (1972) Circadian surfaces and the diversity of possible roles of circadian organization in photoperiodic induction. Proc Natl Acad Sci U S A 69:2734–2737

    Article  CAS  Google Scholar 

  7. Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181

    Article  CAS  Google Scholar 

  8. Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S, Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A, Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda HR, Yoshimura T (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322

    Article  CAS  Google Scholar 

  9. Nicholls TJ, Follett BK, Robinson JE (1983) A photoperiodic response in gonadectomized Japanese quail exposed to a single long day. J Endocrinol 97:121–126

    Article  CAS  Google Scholar 

  10. Lee J, Ma J, Lee K (2019) Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proc Natl Acad Sci U S A 116:13288–13292

    Article  CAS  Google Scholar 

  11. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131

    Article  CAS  Google Scholar 

  12. Travaglio M, Ebling FJP (2019) Role of hypothalamic tanycytes in nutrient sensing and energy balance. Proc Nutr Soc 78:272–278

    Article  Google Scholar 

  13. Bartness TJ, Wade GN (1985) Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Biobehav Rev 9:599–612

    Article  CAS  Google Scholar 

  14. Dardente H (2012) Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J Neuroendocrinol 24:249–266

    Article  CAS  Google Scholar 

  15. Ebihara S, Marks T, Hudson DJ, Menaker M (1986) Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 231:491–493

    Article  CAS  Google Scholar 

  16. Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S, Korf HW, Yoshimura T (2008) Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A 105:18238–18242

    Article  CAS  Google Scholar 

  17. Ikegami K, Liao XH, Hoshino Y, Ono H, Ota W, Ito Y, Nishiwaki-Ohkawa T, Sato C, Kitajima K, Iigo M, Shigeyoshi Y, Yamada M, Murata Y, Refetoff S, Yoshimura T (2014) Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep 9:801–810

    Article  CAS  Google Scholar 

  18. Sáenz de Miera C, Beymer M, Routledge K, Król E, Selman C, Hazlerigg DG, Simonneaux V (2020) Photoperiodic regulation in a wild-derived mouse strain. J Exp Biol 223:jeb217687

    Article  Google Scholar 

  19. Yasuo S, Watanabe M, Iigo M, Nakamura TJ, Watanabe T, Takagi T, Ono H, Ebihara S, Yoshimura T (2007) Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats. Am J Physiol Regul Integr Comp Physiol 292:R1315–R1319

    Article  CAS  Google Scholar 

  20. Shimmura T, Nakayama T, Shinomiya A, Fukamachi S, Yasugi M, Watanabe E, Shimo T, Senga T, Nishimura T, Tanaka M, Kamei Y, Naruse K, Yoshimura T (2017) Dynamic plasticity in phototransduction regulates seasonal changes in color perception. Nat Commun 8:412

    Article  Google Scholar 

  21. Nakayama T, Shimmura T, Shinomiya A, Okimura K, Takehana Y, Furukawa Y, Shimo T, Senga T, Nakatsukasa M, Nishimura T, Tanaka M, Okubo K, Kamei Y, Naruse K, Yoshimura T (2019) Seasonal regulation of the lncRNA LDAIR modulates self-protective behaviours during the breeding season. Nat Ecol Evol 3:845–852

    Article  Google Scholar 

  22. Kalueff AV, Stewart AM, Gerlai R (2014) Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol Sci 35:63–75

    Article  CAS  Google Scholar 

  23. Nakayama T, Okimura K, Shen J, Guh YJ, Tamai TK, Shimada A, Minou S, Okushi Y, Shimmura T, Furukawa Y, Kadofusa N, Sato A, Nishimura T, Tanaka M, Nakayama K, Shiina N, Yamamoto N, Loudon AS, Nishiwaki-Ohkawa T, Shinomiya A, Nabeshima T, Nakane Y, Yoshimura T (2020) Seasonal changes in NRF2 antioxidant pathway regulates winter depression-like behavior. Proc Natl Acad Sci U S A 117:9594–9603

    Article  CAS  Google Scholar 

  24. Chen Y, McCarthy D, Ritchie M, Robinson M, Smyth G (2020) edgeR: differential analysis of sequence read count data User’s guide. https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

  25. Porazinski SR, Wang H, Furutani-Seiki M (2010) Microinjection of Medaka embryos for use as a model genetic organism. J Vis Exp 46:e1937

    Google Scholar 

  26. Essner J (2016) Zebrafish embryo microinjection: Ribonucleoprotein delivery using the Alt-R™ CRISPR-Cas9 System. http://sfvideo.blob.core.windows.net/sitefinity/docs/default-source/user-submitted-method/crispr-cas9-rnp-delivery-zebrafish-embryos-j-essnerc46b5a1532796e2eaa53ff00001c1b3c.pdf?sfvrsn=52123407_4

  27. Ansai S, Kinoshita M (2014) Targeted mutagenesis using CRISPR/Cas system. http://satoshi-ansai.github.io/files/CRISPR_en.pdf

Download references

Acknowledgments

This work was supported by JSPS KAKENHI “Grant-in-Aid for Specially Promoted Research” (26000013) and “Grant-in-Aid for Scientific Research (S)” (19H05643).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yoshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nakayama, T., Okubo, K., Ansai, S., Yoshimura, T. (2022). Identification and Characterization of Genes Involved in Vertebrate Photoperiodism. In: Hirota, T., Hatori, M., Panda, S. (eds) Circadian Clocks. Neuromethods, vol 186. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2577-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2577-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2576-7

  • Online ISBN: 978-1-0716-2577-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics